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• Total row count:
2.34 1011

• Most queries 100 sec
• significant amount of 

queries > 1000 sec

• Full table scan for 
largest tables:
~ 30 minutes



Problems while building the 
MultiDark DB

• Data ingest time:
Need to convert binary to ASCII CSV format 
(highly inefficient)

• Data transformation:
Computing values after ingest slow - best during ingest

• Data indexing:
Index on particle data (~1010 particles) around one week

• Data retrieval times slow on full table scans (~30 min):
cannot build index for every query

• Spatial queries in 3D hard, impossible in 6D
nearest neighbour search also inefficient



Why RDBMS?

• SQL - it took long time for the community to adopt SQL
(we think this is the main problem with NoSQL)

• proven, widely available, large user base
• good for structured data

• Problems:
– Built for different purposes (business, web, ...)

result sets usually small - mostly in memory solutions
– parallelisation of data / sharding
– can be expensive



Our vision:

• Open source DB solution for scientific purposes:
A one size fits all solution built by the community for the 
community

• Developments at AIP:
– DB independent ingestion library and data 

transformation tool (DBIngestor and AsciiIngest)
– MySQL job queue (mysql_query_queue)
– MySQL sharding solution for scientific queries (PaQu)
– Future:

• MySQL plugins for data analysis, spatial queries and indexing
• MySQL storage engine plugins for simulation raw data



PaQu - HPQ for MySQL

• Full table scan of large table: ~ 30 minutes

• From HPC we know:
Distribute your problem over N nodes and you are N times 
faster (if you are lucky) 
– i.e. on 10 nodes, full table scan of large table:

3 minutes!
• From Big Data hype we know:

Use Hadoop and everything is fine

• We want SQL! We want “Hadoop” for MySQL!

HPQ = high performance querying



Spider engine

PaQu - HPQ for MySQL

Query queue

MySQL MySQL MySQL MySQL MySQL MySQL

MySQL
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Spider engine:
Great MySQL sharding engine
developed by Kentoku Shiba

http://spiderformysql.com 

Federated engine:
Used for temporary results in 
joins and aggregates:

Distributed with MySQL to 
access tables on other servers.
(would need rewrite to perform 
better though)

HPQ = high performance querying



Spider engine

PaQu - Part of the Daiquiri world
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PaQuDaiquiri DBIngestor / AsciiIngest



Sharding

Partitioning

bdmId,snapnum,NInCat,hostFlag,x,y,z,vx,vy,vz,np,Mvir,Mto...
8512139648,85,12139648,-1,376.6241,422.5894,822.0686,-28...
8512139687,85,12139687,-1,375.6037,455.9896,821.5078,-27...
8512139688,85,12139688,8512140063,386.5789,459.3805,824....
8512139808,85,12139808,-1,386.2757,459.364,823.8633,-200...
8512139817,85,12139817,-1,379.7938,461.651,824.95,-210.5...
8512139836,85,12139836,-1,371.6952,468.1314,821.6387,-26...
8512139950,85,12139950,-1,383.4955,458.8577,826.043,-213...
8512139956,85,12139956,-1,380.4815,460.9398,825.48,-280....
8512139959,85,12139959,-1,389.6255,462.5074,821.4885,-28...
8512139963,85,12139963,-1,369.4372,467.9669,820.5311,-18...
8512139964,85,12139964,-1,370.2421,467.8633,820.4519,-38...
8512139965,85,12139965,8512140350,374.2386,468.074,822.7...
8512139966,85,12139966,-1,389.1884,463.884,821.507,-245....
8512139967,85,12139967,-1,391.3534,465.8879,821.1749,-26...
8512140019,85,12140019,-1,362.9375,424.1447,821.813,-265...
8512140046,85,12140046,-1,377.2034,447.7321,820.3389,-43...
8512140054,85,12140054,-1,372.1338,454.1272,821.2715,-32...
8512140057,85,12140057,-1,383.0878,458.8527,826.4838,-30...
8512140063,85,12140063,-1,386.6298,459.3906,824.1761
8512140064,85,12140064,8512140063,386.7976,459.6325,824
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PaQu architecture

PaQu consists of two components:
• Basic distributed 

querying operations
• Automatic query 

paralleliser



Basic distributed operations



Basic distributed operations



Basic distributed operations



Query paralleliser - example
SELECT   a.snapnum, SUM(a.mass)/SUM(a.mass)
FROM      
   (SELECT   snapnum, SUM(mass) as sum,
             COUNT(mass) as cnt
    FROM     MDR1.FOF
    GROUP BY snapnum) as a
GROUP BY  a.snapnum;

CALL paquExec(
           "SELECT snapnum AS `snapnum`, COUNT(mass) AS `cnt_avg(mass)`,
            SUM(mass) AS `sum_avg(mass)` 
            FROM MDR1.FOF GROUP BY snapnum", "aggregation_tmp_8896713");

USE spider_tmp_shard; SET @i=0; 
CREATE TABLE multidark_user_admin.`/*@GEN_RES_TABLE_HERE*/` ENGINE=MyISAM 
     SELECT DISTINCT @i:=@i+1 AS `row_id`, `snapnum`, 
                     (SUM(`sum_avg(mass)`) / SUM(`cnt_avg(mass)`)) AS `avg(mass)`
     FROM `aggregation_tmp_8896713` GROUP BY `snapnum` ;

CALL paquDropTmp("aggregation_tmp_8896713");

SELECT   snapnum, 
         AVG(mass) 
FROM     MDR1.FOF 
GROUP BY snapnum;



Automatic query paralleliser

Implicit Joins: Aggregates:

SELECT    a.*, b.*, c.*
FROM      a, b, c
WHERE     b=2 AND
  b.id=c.b_id AND
  a.id=b.a_id;

SELECT    a.*, tmp.*
FROM      a,
    (SELECT  b.*, c.*
     FROM    c,
             (SELECT  b.*
              FROM    b
              WHERE b=2) as b
     WHERE   b.id=c.b_id)
WHERE     a.id=tmp.b.a_ids

SELECT    a.bar, AVG(a.foo)
FROM      a
GROUP BY  a.bar;

SELECT    a.bar, 
          SUM(a.sum)/SUM(a.cnt)
FROM      
   (SELECT   a.bar as bar, 
             SUM(a.foo) as sum,
             COUNT(a.foo) as cnt
    FROM     a
    GROUP BY a.bar) as a
GROUP BY  a.bar;



Performance results 

unindexed aggregate indexed aggregate

• Strong correlation with hardware setup:
– Cache sizes, size of data files (smaller is better / 

partitioning?), network and I/O performance

number of nodes number of nodes
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MultiDark v2.0

• PaQu covers most known use cases of MultiDark
• All data from MultiDark now on 10 DB nodes
• PaQu fully integrated with Daiquiri

• http://escience.aip.de/multidark2



Conclusions

PaQu brings parallel querying to MySQL.

PaQu relies on open source.
PaQu is open source!

Download our DB developments here:
https://github.com/adrpar

Try PaQu yourself and compare with the original:
http://escience.aip.de/multidark2


