
PaQu - Getting the most out of
MySQL with distributed queries

Adrian M. Partl
Leibniz-Institut für Astrophysik Potsdam (AIP)

www.multidark.org

• Total row count:
2.34 1011

• Most queries 100 sec
• significant amount of

queries > 1000 sec

• Full table scan for
largest tables:
~ 30 minutes

Problems while building the
MultiDark DB

• Data ingest time:
Need to convert binary to ASCII CSV format
(highly inefficient)

• Data transformation:
Computing values after ingest slow - best during ingest

• Data indexing:
Index on particle data (~1010 particles) around one week

• Data retrieval times slow on full table scans (~30 min):
cannot build index for every query

• Spatial queries in 3D hard, impossible in 6D
nearest neighbour search also inefficient

Why RDBMS?

• SQL - it took long time for the community to adopt SQL
(we think this is the main problem with NoSQL)

• proven, widely available, large user base
• good for structured data

• Problems:
– Built for different purposes (business, web, ...)

result sets usually small - mostly in memory solutions
– parallelisation of data / sharding
– can be expensive

Our vision:

• Open source DB solution for scientific purposes:
A one size fits all solution built by the community for the
community

• Developments at AIP:
– DB independent ingestion library and data

transformation tool (DBIngestor and AsciiIngest)
– MySQL job queue (mysql_query_queue)
– MySQL sharding solution for scientific queries (PaQu)
– Future:

• MySQL plugins for data analysis, spatial queries and indexing
• MySQL storage engine plugins for simulation raw data

PaQu - HPQ for MySQL

• Full table scan of large table: ~ 30 minutes

• From HPC we know:
Distribute your problem over N nodes and you are N times
faster (if you are lucky)
– i.e. on 10 nodes, full table scan of large table:

3 minutes!
• From Big Data hype we know:

Use Hadoop and everything is fine

• We want SQL! We want “Hadoop” for MySQL!

HPQ = high performance querying

Spider engine

PaQu - HPQ for MySQL

Query queue

MySQL MySQL MySQL MySQL MySQL MySQL

MySQL

Spider
Federated

Spider engine:
Great MySQL sharding engine
developed by Kentoku Shiba

http://spiderformysql.com

Federated engine:
Used for temporary results in
joins and aggregates:

Distributed with MySQL to
access tables on other servers.
(would need rewrite to perform
better though)

HPQ = high performance querying

Spider engine

PaQu - Part of the Daiquiri world

Query queue

MySQL MySQL MySQL MySQL MySQL MySQL

MySQL

Spider
Federated

User Admin

PaQuDaiquiri DBIngestor / AsciiIngest

Sharding

Partitioning

bdmId,snapnum,NInCat,hostFlag,x,y,z,vx,vy,vz,np,Mvir,Mto...
8512139648,85,12139648,-1,376.6241,422.5894,822.0686,-28...
8512139687,85,12139687,-1,375.6037,455.9896,821.5078,-27...
8512139688,85,12139688,8512140063,386.5789,459.3805,824....
8512139808,85,12139808,-1,386.2757,459.364,823.8633,-200...
8512139817,85,12139817,-1,379.7938,461.651,824.95,-210.5...
8512139836,85,12139836,-1,371.6952,468.1314,821.6387,-26...
8512139950,85,12139950,-1,383.4955,458.8577,826.043,-213...
8512139956,85,12139956,-1,380.4815,460.9398,825.48,-280....
8512139959,85,12139959,-1,389.6255,462.5074,821.4885,-28...
8512139963,85,12139963,-1,369.4372,467.9669,820.5311,-18...
8512139964,85,12139964,-1,370.2421,467.8633,820.4519,-38...
8512139965,85,12139965,8512140350,374.2386,468.074,822.7...
8512139966,85,12139966,-1,389.1884,463.884,821.507,-245....
8512139967,85,12139967,-1,391.3534,465.8879,821.1749,-26...
8512140019,85,12140019,-1,362.9375,424.1447,821.813,-265...
8512140046,85,12140046,-1,377.2034,447.7321,820.3389,-43...
8512140054,85,12140054,-1,372.1338,454.1272,821.2715,-32...
8512140057,85,12140057,-1,383.0878,458.8527,826.4838,-30...
8512140063,85,12140063,-1,386.6298,459.3906,824.1761
8512140064,85,12140064,8512140063,386.7976,459.6325,824

dfjjkjflkdjdlkfjlkdf
dfjjkjflkdjdlkfjlkdf
dfjjkjflkdjdlkfjlkdf

AsciiIngestor

DBIngestor

MySQL
node

Spider engine

MySQL

MySQL
node

MySQL
node

MySQL
node

MySQL
node

MySQL
node

85
12
13
96
48
,8
5,
12
13
96
48
,-
1,
37
6.
..
.

85
12
13
99
50
,8
5,
12
13
99
50
,-
1,
38
3.
..
.

85
12
14
00
63
,8
5,
12
14
00
63
,-
1,
38
6.
..
.

85
12
13
96
87
,8
5,
12
13
96
8.
..

85
12
13
99
56
,8
5,
12
13
99
5.
..

85
12
13
99
67
,8
5,
12
13
99
6.
..

85
12
13
96
88
,8
5,
12
..
.

85
12
13
99
59
,8
5,
12
..
.

85
12
14
00
19
,8
5,
12
..
.

85
12
13
98
08
,8
5,
12
..
.

85
12
13
99
63
,8
5,
12
..
.

85
12
14
00
46
,8
5,
12
..
.

85
12
13
98
17
,8
5,
12
13
98
17
..
.

85
12
13
99
64
,8
5,
12
13
99
64
..
.

85
12
14
00
54
,8
5,
12
14
00
54
..
.

85
12
13
98
36
,8
5,
12
13
98
36
,-
1,
37
1.
..

85
12
13
99
65
,8
5,
12
13
99
65
,8
51
21
4.
..

85
12
14
00
57
,8
5,
12
14
00
57
,-
1,
38
3.
..

PaQu architecture

PaQu consists of two components:
• Basic distributed

querying operations
• Automatic query

paralleliser

Basic distributed operations

Basic distributed operations

Basic distributed operations

Query paralleliser - example
SELECT a.snapnum, SUM(a.mass)/SUM(a.mass)
FROM
 (SELECT snapnum, SUM(mass) as sum,
 COUNT(mass) as cnt
 FROM MDR1.FOF
 GROUP BY snapnum) as a
GROUP BY a.snapnum;

CALL paquExec(
 "SELECT snapnum AS `snapnum`, COUNT(mass) AS `cnt_avg(mass)`,
 SUM(mass) AS `sum_avg(mass)`
 FROM MDR1.FOF GROUP BY snapnum", "aggregation_tmp_8896713");

USE spider_tmp_shard; SET @i=0;
CREATE TABLE multidark_user_admin.`/*@GEN_RES_TABLE_HERE*/` ENGINE=MyISAM
 SELECT DISTINCT @i:=@i+1 AS `row_id`, `snapnum`,
 (SUM(`sum_avg(mass)`) / SUM(`cnt_avg(mass)`)) AS `avg(mass)`
 FROM `aggregation_tmp_8896713` GROUP BY `snapnum` ;

CALL paquDropTmp("aggregation_tmp_8896713");

SELECT snapnum,
 AVG(mass)
FROM MDR1.FOF
GROUP BY snapnum;

Automatic query paralleliser

Implicit Joins: Aggregates:

SELECT a.*, b.*, c.*
FROM a, b, c
WHERE b=2 AND
 b.id=c.b_id AND
 a.id=b.a_id;

SELECT a.*, tmp.*
FROM a,
 (SELECT b.*, c.*
 FROM c,
 (SELECT b.*
 FROM b
 WHERE b=2) as b
 WHERE b.id=c.b_id)
WHERE a.id=tmp.b.a_ids

SELECT a.bar, AVG(a.foo)
FROM a
GROUP BY a.bar;

SELECT a.bar,
 SUM(a.sum)/SUM(a.cnt)
FROM
 (SELECT a.bar as bar,
 SUM(a.foo) as sum,
 COUNT(a.foo) as cnt
 FROM a
 GROUP BY a.bar) as a
GROUP BY a.bar;

Performance results

unindexed aggregate indexed aggregate

• Strong correlation with hardware setup:
– Cache sizes, size of data files (smaller is better /

partitioning?), network and I/O performance

number of nodes number of nodes

sp
ee

du
p

sp
ee

du
p

MultiDark v2.0

• PaQu covers most known use cases of MultiDark
• All data from MultiDark now on 10 DB nodes
• PaQu fully integrated with Daiquiri

• http://escience.aip.de/multidark2

Conclusions

PaQu brings parallel querying to MySQL.

PaQu relies on open source.
PaQu is open source!

Download our DB developments here:
https://github.com/adrpar

Try PaQu yourself and compare with the original:
http://escience.aip.de/multidark2

