Heidelberg Institute for Theoretical Studies

result =

return result

Featureless Classification of Light Curves

Sven Dennis Kügler (Astroinformatics@HITS) if self. identity

AG Tagung 2015 | E-Science & Virtual Observatory | Sven Dennis Kügler September 15, 2015

[i]]), result[

eft(nearestNeigbours, (di

Feature-based representation

Feature-based representation

Feature-based representation

Problem:

- Creation & selection of features is a roitrary
- Features are strongly **biased**
- Features do not allow meaningful use of **UNSUPErvized** tasks

-Uncertainty cannot be taken into account

works well for classification of similarly bright objects in individual surveys

But nothing else

Never change a winning team?

Prospects for new approaches:

- (semi-supervised) transfer learning
- Avoiding in-survey biases
- Detection of outliers
- Unsupervized methodology

Avoiding black-box-like selections allows to obtain "real" understanding of data

Density-based representation

Density-based representation

Density-based representation

Judging distances between two densities:

7-class-classification experiment (ASAS)

	kNN	v-SV M	RF
Features (raw)	74.22 ± 1.24 k=11	78.02 ± 0.68 ν =0.19, δ =0.53	79.98 ± 1.16 T = 400
Features (norm.)	77.60 ± 0.76 k=17	80.47 ± 1.21 ν =0.17, δ =0.10	79.99 ± 1.55 T = 400
L2	79.57 ± 0.80 k=19	82.08 ± 0.89 $\nu = 0.01, \delta = 0.56$	
KLD	78.96 ± 1.87 k=23	75.56 ± 0.94 ν =0.26, δ =0.34	Ξ
ВНА	79.73 ± 0.83 k=29	81.11 \pm 0.90 v =0.20, δ =0.14	_

Kügler et al., 2015, MNRAS

7-class-classification experiment (ASAS)

7-class-classification experiment (ASAS)

3 features cannot be encoded in density-representation:

7-class-classification experiment (ASAS)

Analysis of Regular Time Series

Problem:

- Time series generally of variable length
- Respect of sequential behavior
- Invariance against time shifts required

Analysis of Regular Time Series

These **Vector representations** can be visualized.

However

- Visualization algorithms: optimal de- & compression of representation
- Scientifically more interesting: reconstruction error on the data

We propose coupling

Regular visualization

Results

Application to different states of an X-ray binary (RXTE) Credit: Harikrishnan et al., RAA, 2012

Results

Application to Kepler Light Curves

Summary

Irregularly sampled time series

Method

density-based representation capturing all uncertainties Inclusion of non-detections Avoiding survey specific biases

Results

Comparable Performance to features Omitting arbitrary feature selection Allowing for unsupervised methodology Exploring transfer learning scheme

Regularly sampled time series

Method

ESN as vector representation Respecting sequential nature Coupling visualization to ESN

Results

Visualization according to latent dynamics Recovery of physical properties No comparable method exists

Thank you for your attention!

Credit: kepler.nasa.gov