On the analysis of large data sets in the PLATO Data Center

M. Ammler-von Eiff, R. Burston, R. Heller, J. Knoche, H. Schunker, L. Gizon (MPI for Solar System Research, Göttingen)

and the PLATO Mission Consortium

AG meeting 2016, Splinter: E-Science & Virtual Observatory, 14/09/2016

PLAnetary Transits and Oscillations of stars

- transit detection and characterisation of thousands of exoplanets, including Earth-like planets in the habitable zone
- M3 mission selected in ESA's Cosmic Vision 2015-2025 Programme
- launch: end of 2025

The PLATO Concept

- ratio of stellar and planetary radius from transits (1,000,000 stars surveyed)
- stellar radius from Gaia
- mass ratio from ground-based radial velocities (for V<11)
- stellar mass and age from asteroseismology
- radius, mass and age of exoplanets
- The PLATO photometric precision (34 ppm) is such that it enables the measurements of modes of oscillations (80,000 cool dwarfs).

PLATO Observation Strategy

- monitor several fields to cover close to 50% of the sky
- about 1,000,000 stars brighter than V=13 in total
- monitor fields for up to 2-3 years at a cadence of 600s and shorter

PLATO Data Volume Estimates

data volume	data level	per day [Gbytes]	per year [TBytes]
raw data (uncompressed telemetry)		201	72
light curves and centroid curves with corrections applied on- board, imagettes, images of sky regions	LO	214	76
calibrated data with all instrumental corrections applied (L1 data level)	L1	245	87
final science data products, including catalogue of confirmed planetary systems and their characteristics	L2/L3	>>51	>>19
total		711	254

>1.5 PBytes for 6 years of observations; w/o intermediate data, reprocessing, and ground-based follow-up (data level Lg)

PDC:

- in charge of the calibration and processing of the PLATO observations
- delivers final PLATO science data products to the SOC

- consortium scientists scientifically validate final science data products using PDC tools

Ulullu-Dased Observation

Programme Team

OCIEFILING COMMUNICY

access to public data and proprietary data

Statistical tools: example for exoplanets

- planet radius and host star metallicity of ~600 Kepler planets (bottom panel)
- Does metallicity distribution vary over planet radius?
- *P* value (top panel) of two-sample KS test suggests 2 transitions at ~1.7 and ~3.9 R_{\oplus}
- large number of planets (hundreds or thousands) is required to determine these transitions/ patterns precisely.

Statistical tools: example for stars

- rotation period derived with Kepler based on star
- How well do the period measurements agree? objects will be higher and

PLATO and the Virtual Observatory

- VO standards will be included in PLATO software development
- SAMP and VOTable support planned for dedicated tools at PDC main database as well as data analysis support tools
- other VO standards not yet considered
- Interaction with other software like Aladin, Topcat, ...

PLATO and the VO: example

Location 19:27:37.74 + 42:21:46.1 📂 🖄

DSS *SDSS *2MASS *WISE *GALEX *PLANCK *AKARI *XMM *Fermi *Simbad *NED +

📌 now 🧸	🛆 kepid	kepoi name	kepler name	koi dispos	koi vet	koi vet	koi pdis	koi fpfl	koi fpfl	koi fp
1358	6949061	K01960.01	Kepler-343 b	CONFIRMED	Active	2015-09-18	CANDIDATE	0	0	
2864	6948480	K02975.01		FALSE POSI	Active	2015-09-18	FALSE PO	0	1	
3868	6778008	K04373.01		FALSE POSI	Active	2015-09-18	FALSE PO	0	1	
5082	6863161	K03757.01		FALSE POSI	Active	2015-09-18	FALSE PO	0	1	
5097	6949061	K01960.02	Kepler-343 c	CONFIRMED	Active	2015-09-18	CANDIDATE	0	0	
5726	6778019	K02953.01		FALSE POSI	Active	2015-09-18	FALSE PO	0	1	
752	6863839	K01373.01		FALSE POSI	Active	2015-09-18	FALSE PO	0	0	

Frame ICRS

x

Summary and Outlook

- The PLATO science data products will be generated at the PLATO Data Center which is led by MPS Göttingen.
- The PLATO Data Center will offer VO compliant tools and services for use by the mission consortium, including tools for statistical analysis of large data sets.
- A selection of the tools will be made available to the public by ESA.
- Open questions: the final list of tools for statistical analysis and data mining tools needs to be identified.
- Check PLATO M3 Yellow Book (2013). New M3 Red Book is being prepared.