A Neural Network Approach to **Visualising Astronomical Time Series**

Nikos Gianniotis, Dennis Kügler, Kai Polsterer, Peter Tiňo

Astroinformatics Group

Heidelberg Institute for Theoretical Studies

HITS

Problem statement

We are working with datasets of time series, and what we would like to do is reduce the dimensionality of the time series.

Problem statement

We are working with datasets of time series, and what we would like to do is reduce the dimensionality of the time series.

Problem statement

We are working with datasets of time series, and what we would like to do is reduce the dimensionality of the time series.

Is it serious?

Sequences from Gaussian process with correlation function given by

$$c(x_t, x_{t+1}) = (1 + |h|^{\alpha})^{-\frac{\alpha}{b}}$$

When projecting time series we must account for

translation invariance

When projecting time series we must account for

translation invariance

variable length

Problem statement

When projecting time series we must account for

translation invariance

variable length

partially observed

When projecting time series we must account for

translation invariance

variable length

partially observed

Proposed solution

- come up with a new representation for time series
- reduce dimensionality of new representation via autoencoder

Fan-in fan-out neural network

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

Fan-in fan-out neural network

$$\|\mathbf{y} - \tilde{\mathbf{y}}\|^2$$

New representation for time series

New representation for time series

New representation for time series

New representation for time series

New representation for time series

New representation for time series

Measure "one-step aheadedness" via g(y;w)

Vector ${f w}$ captures temporal behaviour of ${f y}$

New representation for time series

Measure "one-step aheadedness" via g(y;w)

Vector ${f w}$ captures temporal behaviour of ${f y}$

Fit an ESN model to each time series and obtain

 $\mathbf{y_1} \; o \; \mathbf{w_1}$

 $\mathbf{y_2} \rightarrow \mathbf{w_2}$

 $\mathbf{y_N} \, o \, \mathbf{w_N}$

New representation for time series

Measure "one-step aheadedness" via g(y;w)

Vector \mathbf{W} captures temporal behaviour of \mathbf{y}

Fit an ESN model to each time series and obtain

fitted w invariant to shift, length, partial observation

 $\mathbf{y_1} \; o \; \mathbf{w_1}$

 $\mathbf{y_2} \rightarrow \mathbf{w_2}$

 $ightarrow \mathbf{w}$

Let us autoencode **w** instead of **y**:

Now we are compressing ESN weight vectors W

Autoencoding of new representation

Let us autoencode **W** instead of **y**:

- Now we are compressing ESN weight vectors W
- lacksquare Don't measure reconstruction with $\|\mathbf{w} ilde{\mathbf{w}}\|^2$

Let us autoencode **w** instead of **y**:

- Now we are compressing ESN weight vectors W
- Don't measure reconstruction with $\|\mathbf{w}\|^2$
- Reconstruction: plug $ilde{\mathbf{W}}$ into g and check how well it still predicts on $extbf{\emph{y}}$

Revisit Cauchy series

Sequences from stationary Gaussian process with correlation function given by

$$c(x_t, x_{t+1}) = (1 + |h|^{\alpha})^{-\frac{\alpha}{b}}$$

Real data - Kepler light curves (1)

Data taken from online repository of Kepler mission

Physical properties

Surface gravity correlates strongly with variability behaviour

Conclusion

- Time series are qualitatively different entities than vectors
- Latent regime must be accounted in dimensionality reduction
- Currently working on not regularly sampled time series
- For more information please refer to:

Model-Coupled Autoencoder for Time Series Visualisation, Neurocomputing

An Explorative Approach for Inspecting Kepler Data, MNRAS

Conclusion

- Time series are qualitatively different entities than vectors
- Latent regime must be accounted in dimensionality reduction
- Currently working on not regularly sampled time series
- For more information please refer to:

Model-Coupled Autoencoder for Time Series Visualisation, Neurocomputing

An Explorative Approach for Inspecting Kepler Data, MNRAS

Thank you for your attention!

Real data - Wind speed data

proposed

Data taken from 10 stations around Hamburg, Frankfurt and Munich **Courtesy of Deutscher Wetterdienst**

Real data - Kepler light curves (2)

Time series autoencoded as vectors

Autoencoding of new representation

Let us a

Why is Euclidean distance on parameters meaningless?

- some components w_i have no effect
- some components w_i more sensitive
- some components in different scale
- . . .

Bad idea!

- Now
- lacksquare Don't measure reconstruction with $\|\mathbf{w} ilde{\mathbf{w}}\|^2$

Fan-in fan-out architecture

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_D \end{bmatrix} \xrightarrow{\mathbf{x}_1} \begin{bmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \vdots \\ \tilde{y}_D \end{bmatrix} = \tilde{\mathbf{y}}$$

$$f_{enc}(\mathbf{y}): \mathbb{R}^D \to \mathbb{R}^2 \quad f_{dec}(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}^D$$