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Problem statement %st

We are working with datasets of time series, and what we
would like to do is reduce the dimensionality of the time series.
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Is it serious?

Sequences from Gaussian process with correlation function given by
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Proposed solution

- come up with a new representation for time series
- reduce dimensionality of new representation via autoencoder



Sketch of autoencoder Eﬂm
Fan-in fan-out neural network
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Fan-in fan-out neural network
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Fan-in fan-out neural network
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Fan-in fan-out neural network
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Fan-in fan-out neural network
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Fan-in fan-out neural network
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Sketch of autoencoder %les

Fan-in fan-out neural network
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New representation for time series j ﬂmrs

Use the echo state network (ESN) to represent time series as vectors W
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New representation for time series ; ﬂmrs

Measure “one-step aheadedness” via g(y;w)

Vector W captures temporal behaviour of Y
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Measure “one-step aheadedness” via g(y;w)
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Vector W captures temporal behaviour of Y

Fit an ESN model to each time series and obtain/
YN — WN



New representation for time series ; ﬂ.m

fitted w invariant to shift, length,

i artial observation
Measure “one-step aheadedness” via g(y;w) P

Y1 — Wi
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Vector W captures temporal behaviour of Y

Fit an ESN model to each time series and obtain/
YN — WN
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Let us autoencode W instead of y:

= Now we are compressing ESN weight vectors W
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Autoencoding of new representation %st

Let us autoencode W instead of y:

= Now we are compressing ESN weight vectors W

= Don’t measure reconstruction with H \M’H 2

= Reconstruction: plug ﬁ)’ into g and check how well it still predicts on y



Revisit Cauchy series
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Sequences from stationary Gaussian process with correlation function given by

(g, 1) = (L+|h]%) 0



AE component 2

Real data - Kepler light curves (1) %Hm
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Data taken from online repository of Kepler mission



AE component 2

Real data - Kepler light curves (3)
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Physical properties
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(c) Surface gravity

Surface gravity correlates strongly with variability behaviour
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Conclusion %

- Time series are qualitatively different entities than vectors

- Latent regime must be accounted in dimensionality reduction
- Currently working on not regularly sampled time series

- For more information please refer to:

Model-Coupled Autoencoder for Time Series Visualisation, Neurocomputing

An Explorative Approach for Inspecting Kepler Data, MNRAS
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Conclusion %

- Time series are qualitatively different entities than vectors

- Latent regime must be accounted in dimensionality reduction
- Currently working on not regularly sampled time series

- For more information please refer to:

Model-Coupled Autoencoder for Time Series Visualisation, Neurocomputing

An Explorative Approach for Inspecting Kepler Data, MNRAS

Thank you for your attention!



Real data - Wind speed data
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Data taken from 10 stations around Hamburg, Frankfurt and Munich
Courtesy of Deutscher Wetterdienst
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Real data - Kepler light curves (2) %Hna
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Time series autoencoded as vectors



Autoencoding of new representation %H-rs

Letusa . . . .
Why is Euclidean distance on parameters meaningless?

® some components w, have no effect
® some components w, more sensitive
e some components in different scale
o

Bad idea!

= Now

= Don’t measure reconstruction with HW — WHL



Sketch of autoencoder Eﬂm
Fan-in fan-out architecture
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