4MOST – 4m Multi-Object Spectroscopic Telescope

TOAD: The 4MOST instrument model

Roland Winkler (rwinkler@aip.de) Ole Streicher, Olga Bellido

www.4MOST.eu

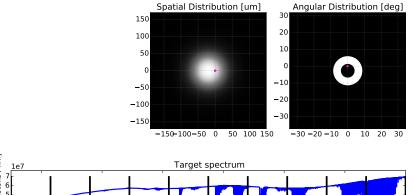
4MOST: 4-meter Multi Object Spectrograph Telescope

- Installed on the 4-meter-ish VISTA telescope near VLT
- 2.5 degrees diameter FoV
- Inscribed hexagon with 2436 fibres + some extra
- Tilting spine technology (Echidna)
- 2 spectrographs resolution > 5000, 370nm to 950nm continuously on 3 arms
- 1 spectrograph resolution > 18000, 3 selected intervals between 400nm and 700nm
- 15 years operational lifetime, all (south) sky survey, \sim 75 Million targets

TOAD: Top Of the Atmosphere to Detector Simulator

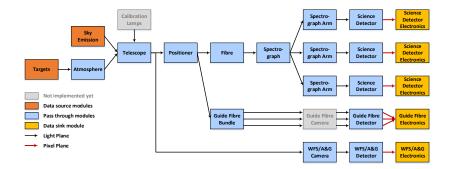
- Use target spectra and target shape to simulate 2D detector images taking all relevant atmospheric, telescope and instrument effects into account
- Simulates image quality and throughput
- TOAD is used in all stages of the project for:
 - Performance preview
 - Trade-off studies
 - Statistics for the 4MOST Facility Simulator
 - Early images for pipelines
- TOAD matures as the instrument design gets more refined over time

Design

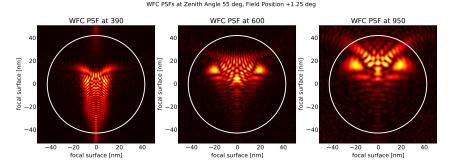

- Goals:
 - Modular and flexible design
 - Portable and easily usable
- Limitations:
 - ▶ Development: < 0.5 FTE per Year
 - No special computer hardware
 - Only free licenses
- Solution:
 - Implementation in Python
 - No ray-tracing or wave-front simulation
 - Chain simulations from ZEMAX, etc. in a consistent model

Simulator	precursor	strategy	FTE/Y	lang.
HARMONI	MUSE	wave-front	1.5	python,
sim.		propagation		C/C++
SiMCADO	-	intensity map	1.5	python, C/C++
METIS sim.	?	intensity map	< 1	IDL
VIRTUAL MOONS	-	ray tracing	0.5	IDL
TOAD	-	single target intensity map	0.5	python

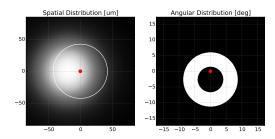
Light Plane data model illustration



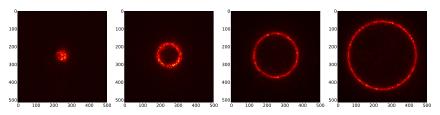
TOAD Modules



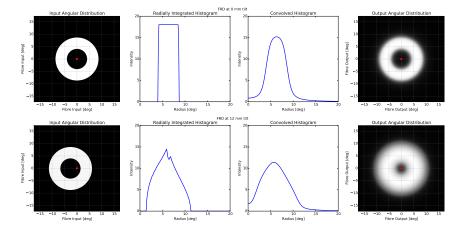
ZEMAX Input for TOAD


- Use various ZEMAX models of the 4MOST optics
- Access ZEMAX by a python script to generate PSF maps depending on instrument setup, field position and wavelength
- Example WFC/ADC: fibre indicated by white circle for scale

Positioner Simulation


- Spine tilt induced effects:
 - ▶ Shift of the angular distribution < 2.7° (at 11.5mm)
 - ▶ Defocus between approx. +100µm at 0mm tilt and -150µm at 11.5mm tilt
 - Defocus implemented by convolving the spatial distribution (near field) with suitably scaled angular distribution (far field)
- Fibre position inaccuracies (< 10µm RMS)

Fibre FRD: Laser measurements


- Azimuthal scrambling
- Focal ratio degredation (FRD)
- Old laser FRD measurements, new model based on a 4MOST fibre prototype in development

Laser FRD measurements from Dionne

Fibre FRD: Simulations

- Projection of light on detector by 'stamping' fibre image
- Effects taken into account (planned, near-future procedure)
- Noise on detector separately stored from target flux
- Randomized detector effects possible for image simulation
- Full detector population with individual targets possible

GIT, JIRA and python venv

- For each simulation request: create a JIRA ticket that contains the request and all discussions, the code and simulation results
 - + : Requests often lack context, blanks are filled within the ticket
 - + : Automatic documentation to understand simulations later
 - : People hate JIRA tickets
- Specify version of TOAD; represented as tags in TOADs GIT repository
- Attach code related to the request and analysis for the JIRA ticket
- Easy to go back to each simulation using a dedicated venv that pulls from the GIT repository

- Biggest concern of TOAD: model verification
- Under development
 - unit tests of basic subroutines
- Planned
 - subsystem verification by comparing with ZEMAX
 - verification by comparing with prototypes
- Unlikely
 - verification by modeling a different instrument with TOAD
- Even unlikelier
 - verification by modeling 4MOST with a different simulator

- All other simulations above are basically done by one developer
- Most ESO instruments build a new simulation tool from scratch or personal history of developers
- It would make sense for current projects to build a common instrument simulation suite
- Could solve the verification problem for future simulations
- Would require investment by projects for the benefit of other projects

- Used in all project stages, following in its accuracy the development needs of the project
- Provides data for trade-offs, data reduction and performance forecast
- Based on a probabilistic model of the light distribution in space, angle and wavelength similar to SiMCADO and the METIS simulator
- Uses a combination of JIRA, GIT and python venv for simulation runs
- Model verification still biggest concern
- TOAD will be become open source shortly after commissioning of 4MOST