
Applausequery
A PyVO application for highlevel access to astronomical
photoplate database

Christian Dersch
18th Sep 2019

Philipps-Universität Marburg

What is APPLAUSE? I

• Archives of Photographic PLates for Astronomical USE
• Archive of about 85000 photographic plates from Bamberg,

Hamburg, Potsdam and Tartu 2

What is APPLAUSE? II

The archive:

• Provides a complete set of database tables containing:
• metadata
• calibration process
• photometry
• lightcurves

• Data Release 3 (fall 2018)
• Detailed information on whole plate processing available for

each measurement
• Provenance documented in detail
• https://www.plate-archive.org/applause/

3

https://www.plate-archive.org/applause/

Intentions

• APPLAUSE does a very good job in data publication and
access

• I want to support it by providing a polished version of the data
access scripts I use, as it is the essential data source for my
phd thesis

• Other services (no name dropping here) are harder to use,
e.g. only web interface available

• Show them that VO, especially TAP is nice and that PyVO
provides a foundation to build service specific packages to
support the scientists

4

How to access APPLAUSE?

• APPLAUSE provides a nice web interface and a TAP service
• For explorative data analysis TOPCAT is a nice tool
• On the other hand: Python with astropy stack is the

environment of choice for astronomical data analysis
• PyVO provides VO access integrated in astropy universe

5

Why applausequery

• Essentially started as a set of scripts to get my scientific work
done

• My research topic
• Analysis of lightcurves on longer time scales
• Changes in lightcurve parameters over time
• Combination with modern CCD data (e.g. ASAS-SN and ZTF)

• Other scientists working with APPLAUSE data might have
similar requirements

6

My (scientific) requirements

• Easy way to get the data, “Load V-band lightcurve for star
UCAC4 104-010297”

• Access to calibration information for single measurements,
e.g. color term of used plate or plate scans
• To discuss outliers caused by different emulsions, scratches etc.
• To recalibrate if neccessary, e.g. when combining with data in

other passbands than B or V (e.g. SDSS filters or Gaia
passbands)

• Many quite similar database queries again and again
• Idea: Develop a Python package to abstract these queries and

integrates with the other astropy packages: applausequery
• Inspired by astroquery

7

PyVO

• “An Astropy affiliated package providing access to remote data
and services of the Virtual observatory (VO) using Python”

• Therefore usable for all services providing VO compliant access
• Supports TAP, SIA, SSA, SCS and SLAP
• In case of applausequery: TAP
• https://github.com/astropy/pyvo

8

https://github.com/astropy/pyvo

Package structure I - requirements

• Map database structure into package structure
• Abstract the underlying query language (SQL) as much as

possible
• Give answers to questions common to the data

• “Load V-band light curve for star UCAC4 104-010297”
• Provide a way to access TAP directly, so user can work with

specific queries without having to handle PyVO directly
• Functions to download non table products, e.g. plate scans

(FITS files) or logbook scans
• Authentication token support to have queries in personal space
• Reproducibility

• Handle the data releases seperately

9

Package structure II

• One subpackage per data release, e.g. applausequery.dr3 for
DR3
• submodules, e.g. lightcurve, scan, logbook

• utils subpackage
• ApplauseTAP class (inherits PyVO TAPService, enhancing it

with Authentication token support)
• Generic functions not specific to a data release

• Use astropy package structure (by using their package
template)

• BSD license, as most astronomical Python packages

10

Package structure - overview

11

How does a query function look like?

def lc_by_tycho2_id(tycho2_id):
docstring left out here to save space

query = "SELECT jd_mid,bmag,bmagerr,vmag,vmagerr \
FROM applause_dr3.lightcurve \
WHERE bmag IS NOT NULL \
AND bmagerr IS NOT NULL \
AND vmag IS NOT NULL \
AND vmagerr IS NOT NULL \
AND tycho2_id=\'%s\' \
ORDER BY jd_mid" %(tycho2_id)

lc = tap_session.run_async(query)
return lc.to_table()

Quite simple: Specify query and call run_async() function of PyVO
TAPService instance 12

Documentation

• Follow astropy documentation style
• Set of examples (partly based on examples at APPLAUSE

website)
• API documentation
• Include ADQL/SQL queries in documentation
• https://applausequery.readthedocs.io (not yet online)

13

https://applausequery.readthedocs.io

Documentation – Example for previously shown function

14

Development and Installation

• On GitHub https://github.com/lupinix/applausequery
• Focus on DR3 for now, older releases might be added later
• Quite early stage of development
• Will be available in PyPI, pip install applausequery
• For now: pip install

git+https://github.com/lupinix/applausequery.git
• Some work required on job handling, for larger queries

15

https://github.com/lupinix/applausequery

Trivial example: One lightcurve, as with web interface

from applausequery.dr3 import lightcurve

l = lightcurve.lc_by_ucac4_id("104-010297")
print(l)

Output (cutted)
jd_mid bmag bmagerr vmag vmagerr

mag mag mag mag
------------- ------- -------- ------- --------
2438292.59583 9.96053 0.168098 9.81953 0.208428
2438314.59444 8.64122 0.144016 8.50023 0.203487

2438315.55 9.55363 0.179155 9.41263 0.221363
2438315.59514 8.97377 0.197298 8.83277 0.23988
...
Length = 158 rows 16

Example: Get many lightcurves in DR3

from applausequery.dr3 import lightcurve

List of UCAC4 identifiers of stars we're interested in,
example from my daily work: Crossmatch of Mira type
stars in ASAS-SN catalog of variable stars with UCAC4
ucac4_stars = [star_1, ..., star_n]
for star in ucac4_stars:

lc = lightcurve.lc_by_ucac4_id(star)
lc.write("star"+".fits", format="fits")

perform_some_shiny_analysis() # for example: feets package

In fact this needs a bit more code in reality, but: we can get
many (thousands) of light curves without requiring to use
SQL directly 17

How to contribute?

• Right now: Mostly queries inspired by my scientific questions
• Open development
• Module easily extendable

• New query → new function in matching submodule
• New set of questions specific to a topic → new submodule

• Proposals: File issue or pull request on GitHub

18

Conclusion

• Data providers: Provide your data by using VO! It makes life
for scientists much easier :)

• APPLAUSE is a very good example!
• Applausequery shows how to use PyVO as a foundation to

provide support packages for your service
• APPLAUSE users: Feel free to provide ideas on further

applausequery enhancements!

19

Questions

Thank you very much for your attention!

Questions?

Resources

General:

• APPLAUSE: https://www.plate-archive.org/applause/
• PyVO:

• https://github.com/astropy/pyvo
• https://pyvo.readthedocs.io/en/stable/

Pictures:

• Slide 3: Plate example
https://doi.org/10.17876/plate/dr.3/plates/301_48552

• Slide 5:
• Screenshot APPLAUSE https://wwww.plate-archive.org
• Screenshot TOPCAT (selfmade)

• Slide 11: Package structure (selfmade)

https://www.plate-archive.org/applause/
https://github.com/astropy/pyvo
https://pyvo.readthedocs.io/en/stable/
https://doi.org/10.17876/plate/dr.3/plates/301_48552
https://wwww.plate-archive.org

