Addressing FAIR data challenges in astronomy -CDS, EOSC, IVOA and ESCAPE

Mark Allen (CDS)

ASTRONOMIQUES DE STRASBOURG

German Astronomical Society meeting September 22, 2020

CDS services for reference data

Reference Database of Astronomical Objects : ~11 million objects, ~36 million IDs, 22 million citation links

Reference service of astronomical catalogues : ~20000 Catalogues, 38000+ published tables, ~30 billion rows

Visualisation and image database : 900+ HiPS surveys: images and cubes (>350 TB) Aladin Desktop Client, Aladin Lite - embeddable web app

+ Cross-match service, CDS Portal, and many APIs...

Made interoperable by standards (IVOA, CDS, +)

Contributing to the global astronomy data infrastructure

Interoperability enables new views of the data e.g. Published catalogues (A&A) - density map

Euro-VO - Euro

VO projects in Europe... since ~2001 DE, UK, ES, FR, IT, (ESA, ESO)

Actions towards different groups:

- VO teams: Building VO standards and tools
- Data Publishers: implementation and requirements
- Science users: requirements, training, feedback

Euro-VO new web pages - to be launched in October

Some science tools in action:

New context: European Open Science Cloud

A. The EOSC will allow for universal access to data and a new level playing field for EU researchers

- Easy access through a universal access point for ALL European researchers
- Cross-disciplinary access to data unleashes potential of interdisciplinary research
- Services and data are interoperable (FAIR data)
- Data funded with public money is in principle open (as open as possible, as closed as necessary)
- EOSC will help increase recognition of data intensive research and data science

Seamless environment, enabling interdisciplinary research

Open Science

Common language in the changing landscape of data sharing

FAIR

• Findable, Accessible, Interoperable, Reusable

Open Science

 Data sharing with open and seamless services to analyse and reuse research data to improve science

Stewardship

 Human skills for curation, quality content, data management, services

□ An example:

NGC 4039 - an interacting galaxy

Find the data available

- Access the data
 - Interoperable use of the data with other data
 - Re-use the data

Findable

Aladin v10.0 Command Frame ICRS Projection Spheric Available data → 23753 / 23756 ALADIN in view out view DSS SDSS 2MASS WISE GALEX PLANCK AKARI XMM Fermi Gaia Simbad NED + DSS2 color select Collections \rightarrow 23753 Welcome to Aladin, Image → 467 your professional sky atlas. 에 pan Gamma-ray \rightarrow 23 X-ray → 40 available over the net! dist UV → 27 Found ! - data available Optical \rightarrow 91 • Compare them with your own HST → 28 ⊕ phot data. Prepare your observation SDSS \rightarrow 7 draw CFHTLS \rightarrow 12 missions. ∱ tag To start, type any object name, such as M1, and press ENTER... DECaPS $\rightarrow 2$ DES \rightarrow 5 Or easier, clic in the main frame and enjoy the sky... DECaLS $\rightarrow 4$ 201 🐤 I æ $[IPHAS \rightarrow 3]$ $[BASS \rightarrow 2]$ GTC Public Archive
DES DR1 LineA color Infrared \rightarrow 173 VISTA \rightarrow 12 . UltraVista → 6 $2MASS \rightarrow 8$ UKIRT-WFCAM $\rightarrow 1$ $\mathbf{\mathbf{x}}$ Spitzer $\rightarrow 9$ HST $\rightarrow 6$ ☑⊕ / DSS2 / color 👘 😐 $\mathbf{\mathbf{\mathcal{I}}}$ HERSCHEL → 76 \blacksquare PILOT $\rightarrow 3$ = prop No data here APEX \rightarrow 2 JPS-PR1 850um zoom Radio $\rightarrow 68$ del 🛛 🛨 NGC 4039 Gas-lines $\rightarrow 45$ Data base $\rightarrow 5$ Catalog → 22277 Cube $\rightarrow 15$ select ā -- all collections -from 1' 57.24' x 46.2' l∎ view ۲ ⊞… coll. ⊕ 🔍 grid study _î↓ sort 12:01:52.79 -18:52:51.6 57.24' x 46.2'

(c) 2018 Université de Strasbourg/CNRS - developed by CDS, distributed under GPLv3

0 sel / 0 src 77fps / 275Mb 📡

I.based on standardised coverage map indexing

□ Accessible

Download in science/visualisation formats

IJ

Interoperable

Interoperable: complex catalog/image queries

Reusable

Services for extracting :cut-outs of the data for re-use

Interoperability

Astronomy - long experience of sharing data

- FITS standard since ~1981
- bibcode for journals

International Virtual Observatory Alliance

- Since 2001
- Standards for astronomy "interoperability"
- 21 international member projects
- 2 Interoperability meetings per year

Architecture diagrams of standards

	Users	Computers		
	Use	r Layer		
	U	Ising		
Finding		VO Core	Getting	
	Sh	naring		
Resource Layer				

Providers

Level 0 - concepts

Data Access Protocols

Providers

Level 1 - VO terminology

VO is FAIR

IVOA Recommendation

	Home	Astronomers	Deployers	Members	About
BSERVATURT ALLIANCE					

Documents & Standards

DOCUMENTS

XML SCHEMA

TEMPLATES

DOC SUBMISSION

Version history

- Technical Specifications
- Notes

Group

||\ 0

- Promotion process
- IVOA Technical Assessment and Roadmap Documents
- Submission Log

Technical Specifications

Title

http://ivoa.net/documents

astrophysics data system

Available via ADS, with DOI

FAIR	sharing.org
\bigcirc	standards, databases, policies

Listed in FAIRsharing

46 standards !

		stable	progress	
үрр	SAMP - Simple Application Messaging Protocol	1.3		1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.11 1.10 1.00
	VOTable - VOTable Format Definition	1.4		1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.20 1.20 1.10 1.00
	MOC - HEALPix Multi-Order Coverage Map	1.1		1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0
	HiPS - Hierarchical Progressive Survey	1.0		1.0 1.0 1.0 1.0 1.0 1.0
DAL	DALI - Data Access Layer Interface	1.1		1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	DataLink	1.0		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Simple Cone Search	1.03	1.1	1.1 1.03 1.02 1.01 1.00
	SIA - Simple Image Access	2.0		2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.01 1.00
	SLAP - Simple Line Access	1.0	2.0	2.0 2.0 <mark>1.0</mark> 1.0 1.0 1.0 1.0 1.0
	SSA - Simple Spectral Access	1.1		1.1 1.1 1.1 1.1 1.04 1.03 1.02 1.01 1.01 1.00
	STC-S: Space-Time Coordinate Metadata Linear String Implementation	1.0		1.0
	TAP - Table Access Protocol	1.1		1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
	TAPRegExt - A VOResource Schema Extension for Describing TAP Services	1.0		1.1 <mark>1.0</mark> 1.0 1.0 1.0 1.0 1.0 1.0
	ADQL - Astronomical Data Query Language	2.00	2.1	2.1 2.1 2.1 <mark>2.00</mark> 2.00 2.00 1.01 1.00
	SimDAL - Simulation Data Access Layer	1.0		1.0 1.00 1.00 1.00 1.00 1.00 1.00
	VOEvent Transport Protocol	2.00		2.00 2.00 2.00 1.00

Most In

Astronomy (+) and EOSC

 Connecting the Astronomy / Astroparticle / Accelerator Particle Physics ESFRI and there Research Infrastructures to EOSC

ESCAPE in a nutshell

ESCAPE

ESCAPE convenes a large scientific community

- **31** partners : **7** ESFRI & landmarks: CTA, ELT, EST, FAIR, HL-LHC, KM3NeT, SKA
- 2 pan-European International Organizations: CERN, ESO (with their worldclass established infrastructures, experiments and observatories).
- 4 supporting ERA-NET initiatives: HEP (CERN), NuPECC, ASTRONET, APPEC
- I involved initiative/infrastructure: EURO-VO (Virtual Observatory)
- 2 European research infrastructures: EGO and JIVE-ERIC
- Budget: 16 M€, Started: Feb 2019, Duration: 42 months
- Coordinator: CNRS (Centre National de la Recherche Scientifique)

Home page: https://projectescape.eu

ESCAPE UTGEN SCIENCE LARGE CALLES A Goals towards a Virtual Research Environment

- Implementing Science Analysis Platforms for EOSC researchers to stage data collections, analyse them, access ESFRIs' software tools, bring their own custom workflows.
- Contributing to the EOSC global resources federation through a Data-Lake concept implementation to manage extremely large data volumes at the multi-Exabyte level.
- Supporting "scientific software" as a major component of ESFRI data to be preserved and accessed in EOSC through dedicated catalogues. Implementing a community foundation approach for continuous software shared development and training new generation researchers.
- Extending the Virtual Observatory standards and methods according to *FAIR* principles to a larger scientific context; demonstrating EOSC capacity to include existing frameworks.
- Further **involving society** in knowledge discovery.

ESCAPE goals: building a domainbased EOSC cell

VO partners and RI partners in WP4

Partners from ESFRIs and astronomy Research Infrastructures

Partners bringing experience from European Virtual Observatory projects

3 'FAIR' related activities in ESCAPE WP4

1. Integration of astronomy VO data and services into the EOSC

• e.g. VO registry into the EOSC framework, participation in RDA, EOSC

2. FAIR principles for data through the Virtual Observatory

- Interoperability standards based on needs
- Support of science community training schools
- Forum event for data providers (2021)
- VO data readiness for use in Science Platforms

3 . Adding value to trusted content in astronomy archives

- ML added-value to archive products
 - exploring: 'search for similar data'

summary

Integration of astronomy VO data and services into the EOSC

-Interaction with EOSC bodies, VO registry in B2FIND, tests of service publishing

 Implementation of FAIR principles for ESFRI data through the Virtual Observatory

-Milestones – representation of ESCAPE priorities at IVOA level - e.g. Radio Astronomy

-ESFRI/RI partners requirements defined, results on tools and VO publishing

- e.g. New version of Aladin Lite in webGL see ADASS in November
- Training activities delayed due to covid-19, but coming in 2021 !!
- Adding value to content in astronomy archives
 - First results of machine learning applied to archive data sets see talk by A. D'Isanto

More about EOSC... it's ambitious

The role of the European Open Science Cloud (EOSC) is to ensure that **European scientists reap the full benefits of data-driven science**, by offering:

1.9 million European researchers and **70 million** professionals in science and technology a **trusted open distributed environment** providing seamless access to data and interoperable services addressing the whole research data life cycle.

The **EOSC implementation roadmap**, published in 2018 by the Commission, addresses the implementation of EOSC under six action lines:

Data interoper FAIR stan	a ability, Idards	Federation of public research infrastructures	Provision of innovative services (incl. commercial)	Access and interface EOSC portal	Governance	Rules for Participation

FAIR WG Task Groups

FAIR practice Interoperability Metrics and certification

EOSC Interest Groups

Researcher engagement and use Service and research product cata-Federating core

Conclusions

FAIR - a good expression for Open Science

 Astronomy is a pioneer of data sharing - we are well placed to make the most of the new opportunities - EOSC

Common challenges include:

- Standardisation at the right level
- Meeting needs of RIs and users innovations, "code to data"
- Critical mass of implementation, and sustainability

Astronomy data sharing - part of a much wider landscape

 benefits from generic components, but need to make sure requirements of astronomy are taken into account

Links

- CDS: <u>https://cds.unistra.fr</u>
- Euro-VO: http://euro-vo.net (coming soon in October 2020)
- IVOA: <u>http://ivoa.net</u>
- ESCAPE: <u>https://projectescape.eu</u>
- EOSC: <u>https://www.eosc-portal.eu/about/eosc</u>