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The γ-ray sky with ray GCE 

Credit: NASA/T. Linden, U. Chicago

γ-ray excess emission pray excess emission peaks at energies ~ 1 – 3 GeV
Detected in 2009 by the Fermi Telescope Goodenough & Hooper 2009

Extends from the Galactic Centre out to ~ 10° 
Seems to be consistent with a generalised NFW profile

https://arxiv.org/pdf/0910.2998
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The γ-ray sky with ray GCE 
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How could annihilating DM and PSs be distinguished?

                                            

                                            granular GCE, 
                                            larger pixel-ray excess emission pto-ray excess emission ppixel variance,
                                            non-ray sky with Poissonian statistics 

smooth GCE, 
Poissonian emission

DM

PSs
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Analysis methods
The most powerful analysis methods to date:

1) Non-ray sky with Poissonian template fitting (NPTF)
● models the sky as a linear combination of templates
● calculates the likelihood for the detected number of counts in each pixel 

2) Wavelet technique

Mishra-ray excess emission pSharma et al. 2017
Lee et al. 2015

Posteriors for the 
model parameters

Flux fractions of each template

Bartels et al. 2016

https://arxiv.org/pdf/1612.03173
https://arxiv.org/pdf/1412.6099


Florian List (USyd) – Neural Networks for the GCE 6

→ GCE mystery still awaits its resolution!

Analysis methods

Current analysis methods are subject to systematics

See Bartels et al. 2016, Lee et al. 2016, Leane & Slatyer 2019, Zhong et al. 2019, 
Chang et al. 2020, Leane & Slatyer 2020 a,b, Buschmann et al. 2020

Lee et al. 2016 Leane & Slatyer 2020a

https://arxiv.org/pdf/1506.05104
https://link.aps.org/doi/10.1103/PhysRevLett.116.051103
https://doi.org/10.1103/PhysRevLett.123.241101
http://arxiv.org/abs/1911.12369
http://arxiv.org/abs/1908.10874
http://arxiv.org/pdf/2002.12370
http://arxiv.org/pdf/2002.12371
http://arxiv.org/abs/2002.12373


Florian List (USyd) – Neural Networks for the GCE 7

We introduce a new method:

Milestones in the GCE analysis

Accurate predictions

Robust to different sources of mismodelling

Results hint at a smooth GCE

Bayesian Convolutional Neural Networks
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● We base our NN architecture on the DeepSphere framework 

● HEALPix sphere is modelled as a graph 

● each pixel is represented by a vertex

● neighbouring pixels are connected with an edge 

   

Perraudin et al. 2019

Neural network architecture
Perraudin et al. 2019

Defferrard et al. 2020

HEALPix tesselation DeepSphere graph

http://arxiv.org/pdf/1810.12186
https://openreview.net/pdf?id=B1e3OlStPB
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Neural network architecture

Convolutional blocks Fully-ray sky with connected blocks

means
stochastic 
uncertainties 

for 7 templates

enforces that flux fractions
● lie in (0, 1)
● sum up to 1introduces 

non-ray excess emission plinearity,
sparseness

reduces 
spatial 
resolution

# channels



Florian List (USyd) – Neural Networks for the GCE 10

Modelling the inner Galaxy
● Majority of detected photons: diffuse Galactic foregrounds 

(pion decay + bremsstrahlung, IC)
● Uniform emission from the Fermi bubbles
● Isotropic extragalactic emission
● PSs associated with the Galactic Disk

GCE:
generalised NFW profile:

● We generate the training maps using NPTFit-ray excess emission pSim

https://github.com/nickrodd/NPTFit-Sim


Florian List (USyd) – Neural Networks for the GCE 11

Proof-ray sky with of-ray sky with concept example
Results on randomly generated maps

● On average, NN accuracy is a bit worse than NPTFit
● But: mean errors are only ~ 0.5% (in comparison: GCE contribution is ~ 4 – 10%)
● Maximum errors for GCE templates are very similar for NN and NPTFit

Maps from the test dataset that 
NN has not seen during training
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Realistic scenario
NN results on simulated Fermi maps

Results for 256 Fermi mock maps with 
best-ray excess emission pfit parameters determined by NPTFit 
(→ GCE is ~100% PS)

We evaluate the NN for 64 ROIs

A part of the PS flux is misattributed to DM, 
but the NN generally identifies PSs to be the 
main constituent of the GCE in the mock maps

Shaded regions: 1σ scatter 
of the NN predictions
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Realistic scenario
NN results on real and simulated Fermi maps

Results for 
Fermi map

NN identifies a GCE that decreases 
monotonically with the ROI radius

Almost 100% of the GCE flux 
is attributed to DM

Shaded regions: 
1σ predictive uncertainties
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Realistic scenario
NN results on real Fermi map when using different templates

● For diffuse templates, isotropic emission, and Fermi bubbles: 
NN and NPTFit estimates are mostly similar

● Total GCE magnitudes are mostly similar, too, but NN consistently assigns flux to 
DM template, whereas NPTFit finds ~ 100% PSs in all the scenarios

ROI radius: 25°
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How to proceed from here?
● Uncertainties should fully reflect the error distribution, 

in particular the inherent degeneracy between 
faint PSs ↔ DM

→ non-ray sky with Gaussian uncertainties

● Instead of only estimating PS / DM flux fractions: 

●

● Many extensions are possible:
– Multiple energy bins, multiple template variants, ...
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Conclusions
● Deep Learning provides powerful tools for analysing the 

γ-ray sky with ray sky
● NN estimates are mostly accurate
● Our first experiments show robustness against mismodelling 
● Our NN prefers a smooth origin of the GCE, 

but faint PSs may be underestimated / confused with DM
● Potential for the GCE mystery to be resolved within the 

coming years with the help of Deep Learning

arXiv:2006.12504

https://arxiv.org/pdf/2006.12504
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