

GalaxyNet: Connecting galaxies and DM haloes with neural networks and reinforcement learning astro-ph: 2005.12276

Benjamin Moster (LMU/MPA)

Thorsten Naab, Magnus Lindström (MPA), Joseph O'Leary (LMU)

How do galaxies form in the Universe?

- Large amount of observed data: mass, SFR, size, clustering...
- Observations just 'snapshots' no time evolution
- How do galaxies assemble in dark matter haloes?
- What sets galaxy properties (e.g. SFR) and scatter?
- What does LSS tell us about cosmology?

Cosmological simulations

- Initial conditions measured very accurately (WMAP, Planck)
- Simulations of Dark Matter are numerically converged

Cosmological simulations

- Initial conditions measured very accurately (WMAP, Planck)
- Simulations of Dark Matter are numerically converged

t/Gyr = 0.2

Abundance matching and variants

- Populate halo merger trees
- infer SF& accretion rates

Models for individual haloes

- Abundance matching: average relation between m* and M_h
- EMERGE has individual growth histories $\dot{m}_* / \dot{M}_h = \epsilon_{instant} (M_h, z)$ Material becoming
- Stellar mass increases as $\Delta m_{*} = \epsilon \cdot \Delta M_{h} = \epsilon M_{h} \Delta t$
- Additionally for satellite galaxies: delayed quenching, stripping, merging
- Parameterised model (11 free parameters)

Statistical galaxy properties up to high redshift

Galaxy formation modelling with Al

- Model & quality of fit is determined by selected relations
 Form of these relations not clear a priori!
- How can we find sensible empirical relations between galaxy and halo properties?

 Machine Learning
- Use Random Forests to find most important halo properties

Wide & Deep Neural Network

Wide & deep neural network to model Galaxy-Halo connection

- Train GalaxyNet with supervised learning and Emerge data first
- Prediction of GalaxyNet for each galaxy (m*, SFR) is compared to Emerge → Adjust weights to minimise difference

Wide & Deep Neural Network

Test different architectures and stop training early

- Best network has 4 layers w/ 16
 nodes + 2 layers w/ 8 nodes
- Reproduce validation data well

Supervised Learning results using Emerge data

Reinforcement Learning with PSO

- Best possible result with supervised learning is to reproduce Emerge (training data), which we already have
- Better option: train network directly with observations using a

reinforcement learning approach!

- Use particle swarm optimisation to find best parameters (network weights / biases)
- Very efficient to probe high-D space

Results from Reinforcement Learning

• Predictions?

 r_p / Mpc

1

10

0.01 0.1

1

 r_p/Mpc

0.01 0.1

1

 r_p/Mpc

10

0.01 0.1

0.01 0.1 1

 r_p / Mpc

Results from Reinforcement Learning

What do we learn about the conversion efficiency?

- Take central galaxies and plot instant.
 conversion efficiency (m*/Mh) vs Mh
- Fit double-power-law at each redshift and study evolution of parameters
- All parameters show linear evolution with scale factor *a* as assumed in EMERGE

Exception: normalisation! Constant at high z, then decreasing!

LS - Clustering at high redshift

- In large volume simulations, low-mass haloes unresolved → problem for Emerge, SAMs,...
- Apply GalaxyNet to HugeMDPL DM simulation (L = 4 Gpc/h)
- Predict BAO signal and zerocrossing for different stellar mass bins up to $z \sim 4$

LS - Clustering at high redshift

- Predict galaxy bias at 8 Mpc/h for different stellar mass bin
- Simple scaling law $b = b_0(m*) [(z+1)^{b_1} + b_2]$
- Can be used to infer cosmic variance for high-z surveys

LS - Clustering at high redshift

Predict projected correlation function up to high redshift

Conclusions

- Self-consistent cosmological framework
 - -> connect observed galaxies to simulated DM haloes Model individual haloes/galaxies with conversion efficiency
- Relations between galaxy and halo properties are not always clear
 - → Use Wide & Deep NN with a reinforcement learning approach
 - → Galaxy-Halo Connection without imposed relations
- Can fit observations even better than empirical models However, not self-consistent between m and SFR (yet).
- Use GalaxyNet to get better parameterisation for EMERGE
- Apply GalaxyNet to huge DM sims to get (clustering) predictions

