

Annual meeting of the German Astronomical Society:
Machine learning methods in astronomy from solar systems to cosmology

23 September 2020

Joris Vos, Alexey Bobrick, Maja Vučković

Neural Network assisted Population
Synthesis studies

Hot subdwarf-B stars

● Look like B-type stars with high
surface gravity

● Located at extreme blue end of the
horizontal branch

● Evolved low mass stars, < 2 Msol
● Core He burning
● Lost the majority of their H envelope

on the RGB

Observed period – mass ratio

23 systems with
well defined P & q.

Two groups are
visible with similar
P-q correlation

Longer orbital
period corresponds
to heavier
companion

K-type companion

F-type companion

Vos et al. 2019 MNRAS 482 459

Population synthesis studies

Population synthesis codes

e.g.: BSE (Hurley+2000 MNRAS 315 543)

✗ Approximated physics through
fitting functions

✗ Low time resolution

✔ Very fast (<sec / model)

1D stellar evolution codes

e.g.: MESA (Paxton+2011 ApJS 192 3)

✔ Accurate physics, fully
calculated models.

✔ High time resolution

✗ Very slow (~hours / model)

Problem: Many BPS codes could not produce hot subdwarf stars due to limited
physics

Best case scenario:
A FAST and ACCURATE code that can produce sdBs

NNaPS

Typical population synthesis codes are created by using pre-computed or
fitted stellar evolution models together with some extra physics to determine
the evolution of many systems.
Binary evolution is added on top of this.

Idea: Automatize this process using machine learning

Create models for the systems under study

extract observable parameters

compare with real observations

Interpret the difference and update the physics

NNaPS

Neural Network assisted Population Synthesis package

Python package to simplify using a 1D stellar evolution code as a
population synthesis code

Easily extract aggregated parameters from a large grid of MESA models

Apply different stability criteria and CE formalisms

Train a Neural Network or a random forest to be used as a population
synthesis code (non linear interpolation)

https://github.com/vosjo/nnaps

>>> pip install nnaps

https://nnaps.readthedocs.io

NNaPS-MESA
Compress MESA models

Select what output you really need
and only keep that

Outputs in HDF5 format

Saves a lot of space (up to tenfold
reduction)
→ useful when working on a laptop

NNaPS-MESA
Extract Parameters

Define which stability criteria, CE
formalism to use

Define aggregate parameters:

<parameter>__<phase>__<function>

- star_1_mass__init
→ initial mass

- he_core_mass__HeIgnition
→ core mass at He ignition phase

- age__HeCoreBurning__diff
→ duration of He core burning phase

- lg_mstar_dot_1__max
→ maximum mass loss rate

NNaPS-MESA

stability P_init P_He a_He M1_in
it

M1_He M2_init

contact 116.330 0.0230 0.38802 1.5340 0.3972 0.272

stable 43.040 785.3573 573.62290 2.8940 0.5358 2.882

contact 131.820 0.2535 1.54305 1.9070 0.3615 0.925

stable 60.250 328.6860 227.38488 1.1210 0.4134 1.048

contact 56.480 0.1151 0.91781 1.8190 0.3325 0.931

contact 151.340 0.0292 0.47904 1.2180 0.3577 0.204

stable 188.960 1137.7345 590.74436 1.5460 0.5046 1.492

stable 32.380 525.4006 370.94182 2.7720 0.5020 1.981

stable 30.610 421.8050 346.38695 2.8640 0.6529 2.484

CE 433.360 0.5942 2.99529 1.4150 0.4543 0.476

...

Results in a csv table with one row
for each model and one column for
each parameter

NNaPS-MESA

Evolution phases:
MS, RGB, He ignition, He Core burning, He shell burning,
sdB, sdO, Horizontal Branch, He-WD
Mass loss phases, CE phase

Stability criteria based on:
mass ratio, mass loss rate, L3 mass loss, radius/separation,
mass lost per orbit, angular momentum lost per orbit

CE formalisms:
- Iben & Tutukov 1984, ApJ, 284, 719
- Webbink 1984, ApJ, 277, 355
- Dewi and Tauris 2000, A&A, 360, 1043 (profile integration)
- De Marco et al. 2011, MNRAS, 411, 2277

Actively being extended!

NNaPS predictions

Easy training of XG boosted trees and Neural Networks using the extracted

parameters from nnaps-mesa.

Takes care of features scaling and encoding where necessary

Works out out of the box but also allows manually fine tuning parameters

Build on top of Scikit learn and Keras/TensorFlow.

from nnaps import predictors

setup = {
 'datafile': <path to csvfile>,
 'features': ['donor_mass', 'initial_period', 'initial_q'],
 'regressors': ['final_period', 'final_q'],
 'classifiers': ['product_type']
}

predictor = predictors.FCPredictor(setup=setup)
predictor.fit()
new_predictions = predictor.predict(new_data)

Example: P-q relation in sdB binaries

Orbital periods of hot subdwarfs
are very strongly correlated with
their mass ratio.

Why: combination of interaction
physics and Galactic evolution.

→ 2000 MESA models randomly
distributed in initial parameters
→ Used NNaPS to train a NN
→ 20000 models / case with NN

Vos et al. 2020, A&A, in press

Example: Jdot during RLOF

→ 1500 MESA models, half standard, half enhanced.
→ Same initial population (10000 systems) for each Jdot setting with NN

Angular momentum loss does not influence the final orbital period
reached, but combined with an galactic initial distribution not all final
orbits are possible

Summary

We developed a different approach to population synthesis studies

● Use a 1D hydrodynamical code (MESA) to calculated just enough
models to span your parameter space

● Use NNaPS to extract parameters of interested and train a NN to act
as interpolator in those parameters

● Combine with the required initial population.

Not a total replacement for Population synthesis codes, but has its use
cases.

https://github.com/vosjo/nnapshttps://nnaps.readthedocs.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

