Southampton

 Testing the small-scale properties of galaxies in hydrodynamical simulations with deep learning arXiv:2007.00039

Lorenzo Zanisi & M. Huertas-Company, F. Lanusse, C. Bottrell, A. Pillepich, D. Nelson, V. Rodriguez-Gomez, F. Shankar, L. Hernquist, A. Dekel, B. Margalef-Bentabol, M. Vogelsberger, J. Primack

Hubble's Galaxy Classification Scheme

Credits: U. Iowa

EAGLE

Schaye+15, Crain+15

ILLUSTRIS

Vogelsberger+14ab, Genel+14, Sijacki+15

ellipticals

ILLUSTRIS TNG

Pillepich+18, Nelson+18,Naiman+18,Springel +18, Marinacci+18 How realistic is the morphology of simulated galaxies?
 Can we accurately quantify this? The science questions

0

Q

Strategy

PixelCNN

The probability distribution is explicitly modelled pixel by pixel

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

٠

PixelCNN++

Salimans+17

Low likelihood

3675.0

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

The likelihood "knows too much" about the sky.

High likelihood

4172.0

What can we do?

See also: Serrà et al. 2019 Ren et al. 2019

Galaxy archetypes

The Sersic Function models the light profile of a galaxy

$$I(R; n, R_e) = I_e \exp\left\{-b_n \left[\left(\frac{R}{R_e}\right)^{-1/n} - 1\right]\right\}$$

Smooth, **featureless** "blob" with **the same global properties** (size, luminosity, ellipticity..)

Global properties & Details & Background Global properties & Background

$$p(X_{test}; \vec{\theta}) = p(X_{subject}; \vec{\theta}) p(X_{bg}; \vec{\theta})$$
$$LLR = \log \left\{ \left[\frac{p(X_{subject}; \vec{\theta}_1)}{p(X_{subject}; \vec{\theta}_2)} \right] \left[\frac{p(X_{bg}; \vec{\theta}_1)}{p(X_{bg}; \vec{\theta}_2)} \right] \right\}$$

Background removal

Ren et al. 2019 (monochromatic bg)

$$p(X_{test}; \vec{\theta}) = p(X_{subject}; \vec{\theta}) p(X_{bg}; \vec{\theta})$$
$$LLR = \log \left\{ \left[\frac{p(X_{subject}; \vec{\theta}_1)}{p(X_{subject}; \vec{\theta}_2)} \right] \left[\frac{p(X_{bg}; \vec{\theta}_1)}{p(X_{bg}; \vec{\theta}_2)} \right] \right\}$$

Background removal

Ren et al. 2019 (monochromatic bg)

Pixel-wise contributions

Contribution of the background is null in the LLR

$$p(X_{test}; \vec{\theta}) = p(X_{subject}; \vec{\theta}) p(X_{bg}; \vec{\theta})$$

$$LLR = \log\left\{ \left[\frac{p(X_{subject}; \vec{\theta}_1)}{p(X_{subject}; \vec{\theta}_2)} \right] \left[\frac{p(X_{bg}; \vec{\theta}_1)}{p(X_{bg}; \vec{\theta}_2)} \right] \right\}$$

Background removal

Ren et al. 2019 (monochromatic bg)

$$p(X_{subject}; \vec{\theta}) = p(X_{details} | X_{global}; \vec{\theta}) p(X_{global}; \vec{\theta})$$
$$LLR = \log\left\{ \left[\frac{p(X_{details} | X_{global}; \vec{\theta}_1) p(X_{global}; \vec{\theta}_1)}{p(X_{global}; \vec{\theta}_2)} \right] \right\}$$

Details enhancement

$$p(X_{test}; \vec{\theta}) = p(X_{subject}; \vec{\theta}) p(X_{bg}; \vec{\theta})$$
$$LLR = \log\left\{ \left[\frac{p(X_{subject}; \vec{\theta}_1)}{p(X_{subject}; \vec{\theta}_2)} \right] \left[\frac{p(X_{bg}; \vec{\theta}_1)}{p(X_{bg}; \vec{\theta}_2)} \right] \right\}$$

Background removal

Ren et al. 2019 (monochromatic bg)

$$p(X_{subject}; \vec{\theta}) = p(X_{details} | X_{global}; \vec{\theta}) p(X_{global}; \vec{\theta})$$
$$LLR = \log \left\{ \left[\frac{p(X_{details} | X_{global}; \vec{\theta}_1) p(X_{global}; \vec{\theta}_1)}{p(X_{global}; \vec{\theta}_2)} \right] \right\}$$

Details enhancement

Pixel-wise contributions

Central regions are enhanced in LLR

A key property

$$\mathbb{E}_{x \sim q}[LLR] = \int \log\left\{\frac{p_{\theta_{\text{obs}}}(X)}{p_{\theta_{\text{sersic}}}(X)}\right\} q(X)dX = D_{KL}(q||p_{\theta_{\text{sersic}}}) - D_{KL}(q||p_{\theta_{\text{obs}}})$$

 D_{KL} : Kullback-Leibler divergence. "distance between two distributions"

A key property

$$\mathbb{E}_{x \sim q}[LLR] = \int \log\left\{\frac{p_{\theta_{\text{obs}}}(X)}{p_{\theta_{\text{sersic}}}(X)}\right\} q(X)dX = D_{KL}(q||p_{\theta_{\text{sersic}}}) - D_{KL}(q||p_{\theta_{\text{obs}}})$$

>0: q is closer to observations

Highest LLR for observations

A high LLR is a sign of good agreement with observations

<0: q is closer to Sérsic

A key property

$$\mathbb{E}_{x \sim q}[LLR] = \int \log\left\{\frac{p_{\theta_{\text{obs}}}(X)}{p_{\theta_{\text{sersic}}}(X)}\right\}q$$
$$= D_{KL}(q||p_{\theta_{\text{sersic}}}) - D_{KL}(q||p_{\theta_{\text{obs}}})$$

>0: closer to observations

Low delta: good agreement

~40,000 r-band images from Sloan Digital Sky Survey

Training

Best Sérsic fit parameters from Meert+15

Pillepich+18, Nelson+18,Naiman+18,Springel +18, Marinacci+18

ILLUSTRIS

Vogelsberger+14ab, Genel+14, Sijacki+15

Datasets

		TNG50	TNG100
Volume	$[\mathrm{Mpc}^3]$	51.7^{3}	110.7^{3}
$L_{\rm box}$	[Mpc/h]	35	75
$N_{ m GAS}$	-	2160^{3}	1820^{3}
$N_{\rm DM}$	-	2160^{3}	1820^{3}
N_{TR}	-	2160^{3}	2×1820^3
$m_{ m baryon}$	$[{\rm M}_\odot]$	8.5×10^4	1.4×10^6
$m_{ m DM}$	$[{\rm M}_\odot]$	$4.5 imes 10^5$	7.5×10^{6}
$\epsilon_{\rm gas,min}$	[pc]	74	185
$\epsilon_{\mathrm{DM},\star}$	[pc]	288	740

Pillepich+18, Nelson+18,Naiman+18,Springel +18, Marinacci+18

ILLUSTRIS

Vogelsberger+14ab, Genel+14, Sijacki+15

name	volume [(Mpc) ³]	DM particles / hydro cells / MC tracers	$\epsilon_{ m baryon}/\epsilon_{ m DM}$ [pc]	$m_{ m baryon}/m_{ m DM}$ $[10^5{ m M}_{\odot}]$	$r_{ m cell}^{ m min}$ [pc]
Illustris-1	106.5^{3}	$3\times 1,820^3 \cong 18.1\times 10^9$	710/1,420	12.6/62.6	48

Datasets

TNG1

Fully realistic mock observations

- 1. Dust-inclusive radiative transfer
- 2. SDSS r-band mock images
- 3. Realistic PSF & sky background

Rodriguez-Gomez+19, Bottrell+19

Pillepich+18, Nelson+18,Naiman+18,Springel +18, Marinacci+18

TNG5

ILLUSTRIS

Vogelsberger+14ab, Genel+14, Sijacki+15

The **small**-scale morphology of TNG and Illustris galaxies

Results

- 1. Illustris TNG improves over Illustris: better physics
- 2. TNG50 (higher res) improves on TNG100 (lower res)

Higher is better

Quantifying galaxy morphology with just one number!

Size-mass relation

Brighter is better

Size-mass relation

Brighter is better

Sérsic index-size relation

Brighter is better

٠

Sérsic index-size relation

Brighter is better

See also Bottrell+17

Mock TNG50 and SDSS observations:

Very similar to human eye!

Pixel-wise contribution to LLR

Mock TNG50 and SDSS observations:

Very similar to human eye!

Pixel-wise contribution to LLR:

Lack of strong signal in inner regions for TNG50

A possible answer: resolution

Why?

- 1. TNG50 (high res) achieves best performance
- 2. Small & concentrated: tightly packed orbits, softening length becomes important
- 3. Central regions not well reproduced

TNG50-2 and TNG50-3: lower resolution runs of TNG50

Lower resolution: worse performance

Summary

- → Deep learning framework to compare sets of images (N.B. can be used in other applications!): two generative models
- → Based on a metric (LLR) which quantifies the difference between distributions
- → Quantitative test of very high level features in simulated galaxies
- → Simulated compact, concentrated galaxies are in tension with observations
- → Resolution might be the culprit

arXiv:2007.00039 I.zanisi@soton.ac.uk