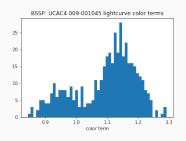
Creating variable star catalogs from public photographic plate archives

Christian Dersch

17th Sep 2021

Philipps-Universität Marburg

Research topic for my PhD

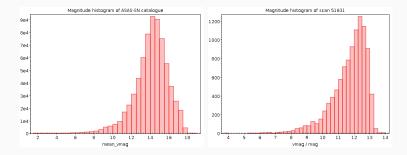


- Analysis of photographic plate archives
- Focused on (semi-) periodic variable stars
- Goal: Produce catalogs of variable stars to study aspects like period changes and long termin variability

Bamberg Southern Sky Patrol (BSSP)

- Photographic plate survey at southern sky
- Carried out between 1962 and 1976
- Boyden Observatory (South Africa)
- Mount John (New Zeeland)
- San Miguel Observatory (Argentina)
- 22671 plates in APPLAUSE data release 3

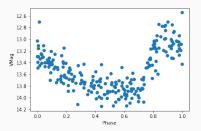
Why not all plates in APPLAUSE?


- BSSP plates quite homogenious (only few emulsions)
- In contrast: WR134 (star in cygnus constellation) not covered by BSSP:
 - plates from multiple archives, even more different emulsions
 - color term of data points spreads quite wide due to different emulsions
 - leads to shifts in calibration, resulting in issues in period calculations

ASAS-SN

- All-Sky Automated Survey for Supernovae
- photometric all sky survey running since 2014
- variable star database
- detailed analysis in papers The ASAS-SN catalogue of variable stars I-IX
- perfect for comparison with analysis of BSSP variable stars

Comparison of catalog parameters



- Criteria for catalog selection
 - Magnitude range (e.g. Gaia problematic for bright objects)
 - Spectral range should match roughly
 - resolution (ASAS-SN: 8 arcsec/pixel, close to BSSP). Gaia resolves much better → Sometimes one source in BSSP corresponds to a set of multiple fainter sources in Gaia

Analysis

- crossmatch ASAS-SN with UCAC4 (as this is the best identifier for APPLAUSE)
- get corresponding BSSP lightcurves from APPLAUSE
- perform time series analysis (periods, fourier decomposition)
- try to classify the stars and compare with ASAS-SN

Results

- ullet accurate periods even for noisy stars down to $\sim 14.5~{
 m mag}$
- tested with "stable" variables, esp. RR-Lyrae, periods match ASAS-SN periods by 1.6 seconds (mean difference)
- scientific result for RR-Lyrae: some stars have a significant period difference of tens of seconds to few minutes
- ullet \to systematic analysis of BSSP will provide a wider range of time series to analyze such effects
 - Paper in prepreration, data to be published (via VO)

CenturyOfSky@home I

- Right now: analysis by comparison with known catalogs, search for significant periods using mostly Lomb Scargle (LS) algorithm
- In many cases, supersmoother algorithm finds periods for different types of variability most reliably when LS fails
- Issue: supersmoother is very expensive with respect to computation time, known variables are only a subset of all stars in BSSP
- Idea: Use the power if distributed computing (DC)!
- CenturyOfSky@home
- Also: make photographic plate archives more popular
- BOINC, approach similar to Einstein@home, Universe@home

CenturyOfSky@home II

- Rechenkraft.net: association for distributed computing in germany
- provides infrastructure for DC projects based on BOINC
- will host the project, already hosts some projects, e.g. RNAWorld

Conclusion

- comparative analysis between BSSP and ASAS-SN shows:
 creating a catalog of variable stars from photographic plate archives provides reliable and even new scientific results
- done for periodic variables such as RR-Lyrae, Mirae etc.
- still missing: irregular variables
- CenturyOfSky@home: proposed citizen science project to provide a way to analyze protographic plate archives

Thank you very much for your attention!

Questions?

Acknowledgement

Funding for APPLAUSE has been provided by DFG (German Research Foundation, Grant), Leibniz Institute for Astrophysics Potsdam (AIP), Dr. Remeis Sternwarte Bamberg (University Nuernberg/Erlangen), the Hamburger Sternwarte (University of Hamburg) and Tartu Observatory. Plate material also has been made available from Thüringer Landessternwarte Tautenburg.

Resources

- APPLAUSE: https://www.plate-archive.org/applause/
- ASAS-SN: https://asas-sn.osu.edu/
- Rechenkraft: https://www.rechenkraft.net/