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Practical application of  

t-distributed stochastic neighbor 

embedding in classifying 

chromospheric spectra



3D data     science in every pixel

❑ 3-hours of observation at VTT contains about 8.7 million intensity and contrast 
profiles.
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Verma et al. 2021, ApJ 907, 54



Classifying the spectra using t-SNE
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t-SNE     appropriate tool to classify 

spectra
❑ Probabilistic approach

❑ Dimensionality reduction

❑ t-SNE result of classifying on 
3000 256-dimensional
grayscale images of
handwritten digits.

❑ Classes are quite well separated 
even though t-SNE had no 
information about class labels.

❑ Within each class,
properties like orientation,
skew and stroke thickness
tend to vary smoothly
across the space. 
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van der Maaten and Hinton 2008, J. Mach. Learn. Res. 9, 2579

van der Maaten 2014, J. Mach. Learn. Res. 15, 3221 



t-SNE     appropriate tool to classify 

spectra
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A Gaussian probability distribution 

centered on each point in high-

dimensional space. The similarity 

between points pi and pj (two 

profiles) is the conditional probability 

Pj|i for point pi to pick point pj as its 

neighbor.  

To find only pairwise similarities, the 

value of Pi|j can be set to zero. For 

the low-dimensional counterparts qi

and qj of the high-dimensional points 

pi and pj, similar conditional 

probability Qi|j

To minimize the mismatch between 

the two distributions. Done by 

minimizing the sum of the Kullback-

Leibler divergence over all data 

points using a gradient descent 

algorithm. Matijevič, et al. 2017, A&A, 603,A19

Anders, et al. 2018, A&A, 619,A125

Panos & Kleint 2020, ApJ, 891, 17



t-SNE    from profiles to classification 
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t-SNE projection of 630 x 660 spectral profiles 
with 601 wavelength points.

The choice of parameters perplexity = 50, 
theta = 0.5, number of iterations = 1000

Q1 Is the default choice 
ok?

Q2 Is the projection 
different for profiles and 
PCA coefficients?

Q3 Is the projection  
affected by seeing 
conditions?

https://distill.pub/2016/misread-tsne/

https://distill.pub/2016/misread-tsne/


Backmapping
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❑ Binary parameter ‒ unity if linear and rank 

order correlation (ρ = 0.95) between 

observed and CM inverted profiles. 

❑ Number of profiles per hexagonal bin ‒

binning and taking average suitability 

parameter becomes floating-point number

❑ Normalized distance from the              

center of t-SNE map

❑ t-SNE concentrates the very similar     

quiet-Sun profiles in center

❑ All other broad profiles are pushed             

to periphery
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Is the default choice ok?

Parameter study – careful selection
A1 The default parameters are fine, maybe the number of iterations has to be 
increased for large datasets



Is the projection different for 

different input data?
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A2/3 Subtle differences, same computing time

❑ Noise stripped contrast profiles for bad seeing (a), PCA coefficients for good seeing (b), 

observed contrast profiles for best seeing (c), noise stripped intensity profiles (d)



Interpreting clustered 

spectral profiles
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❑ Clustering ability of t-SNE and identify the ten largest clusters with suitability parameter exceeds 0.9

❑ Four are isolated remaining in pairs (2 & 3, 4 & 5, 8 & 9)

❑ Back-mapped to line-core intensity map – all cluster associated with dark features.

❑ 1 & 9: arch-filaments ‒ 2: footpoint regions ‒ 4, 5, & 8: upper, middle, and side edges of surge

❑ Sanity check: reprojection – initial clusters are present

❑ However, pairwise clusters remains for 4 & 5, new pair 1 & 3 – human inference needed



Profiles belonging to ten clusters
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❑ Variations in all   

10 clusters

❑ 10 clusters in        

3 classes

❑ Contrast profiles 

with pronounced 

central component 

(1, 3, 9, & 10)

❑ Broad and deep 

profiles with similar 

amplitude of 

central maxima 

and neighboring 

minima (2 & 5)

❑ Contrast profiles 

where central 

maximum is less 

pronounced and 

the contrast is 

almost everywhere 

negative (4, 6,7, & 

8)



Re-projection of  ten clusters
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❑ Reprojection of             

10 clusters in terms of 

CM parameters

❑ Vertical line with small 

Doppler width separating 

largest values to the right 

and moderately large 

values to the left

❑ Projection can be 

separated in two large 

clusters with high    

(Class 1) and low (Class 

2 and 3) values

❑ Difference in Class 2  

and 3 is mainly due to 

difference in the cloud 

velocities

❑ From 10 clusters to two 

or three classes 

associated with 

chromospheric

absorption features 



What did we learn?
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What did we learn?

❑ As an unsupervised machine learning algorithm t-SNE is 

capable, without any a priori knowledge, to identify Hα

profiles suitable for CM inversions.

❑ Profiles characteristic of active chromosphere are mainly 

pushed to periphery.

❑ Default parameters yield already very good results while 

being computationally efficient.

❑ Projections are comparable for various input data, however, 

both noise-stripped contrast profiles and their PCA 

decomposition based on 10 eigenvectors performed best.

❑ Clustering based on suitability parameter

❑ Spectral classes can be defined based on CM parameters. 

❑ Human inference is an essential part of classification.

❑ Framework presented is particularly relevant for Big Data.
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https://arxiv.org/pdf/2011.13214.pdf


