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Machine Learning Astrophysics

Galactic Archaeologist

My Introduction: 



Galactic Archaeology: 

● Study of formation and evolution of the Milky way by analyzing stars and stellar populations as relics.

● The ΛCDM model provides a framework to understand how galaxies form and evolve. (hierarchical mergers) 

● Milky way is an ideal test bed for Galaxy formation and evolution theories as it is the only galaxy which can be 

studied in detail with resolved stars.

“Man meets Milky Way”
Credit: ESO/P. Horálek
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Source: 
http://www.astro.lu.se/~greg/mil

kyway.html

1. Deconstruct the Galaxy into its components.

2. Photospheric chemistry = ISM composition at 
T

birth
.

3. Chemical Composition, Ages, Positions and 
Kinematics of a large number of stars is necessary 
for the complete picture.



Why study Lithium?
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Time

Lithium 
Abundance

A(Li)
SBBN ∼ 2.75 dex

Spite Plateau ∼2.22 dex

Primordial Li ?

Internal Destruction
(Stellar Physics)

SUN 1.05 dex ( 50 times less !! )

Solar Meteorite 3.26  dex

Galactic Chemical 

Evolution



Chemical Evolution of Lithium: --> CNN

To help tighten the constraints on cosmological, stellar and galactic chemical evolution models, analysis of larger 

number of Li abundances A(Li) is necessary. To derive chemical abundances we need stellar spectroscopy!!

Dedicated spectroscopic surveys like RAVE, Gaia-ESO, LAMOST, APOGEE, GALAH, 4MOST, WEAVE, etc. have and 

will provide with high-quality spectra for several million stars.    This demands automated and 

supervised/unsupervised data reduction and parameters estimation.
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Prepare ML groundwork



The Project Idea:

TRAINING SAMPLE: high SNR 
with stellar labels T

eff
, Log(g), 

[Fe/H], A(Li)

CONVOLUTION 
NEURAL 

NETWORK

TRAINING & VALIDATION
LABELS and MODEL CNN

DATA PRODUCT:
T

eff
, Log(g), [Fe/H], A(Li)

OBSERVATION SAMPLE

SCIENCE:
Chemical Evolution of 

Lithium in the Milky Way
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Data: Gaia-ESO Survey

• We use GES-iDR6 labels and Spectras from ~41,000 GIRAFFE HR15 
setup. (the 7Li Line)

• iDR6 data coming from COG and spectral fitting classical pipelines. 
LABELS = STELLAR LABELS (physics)
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Teff 4897 K

Log(g) 2.55 dex

[Fe/H] -0.11 dex

A(Li) 2.63 dex
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Training Sample:
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Good performances are achieved by meticulously building a high quality and homogeneous training sample as well 
problem specific optimization of the CNN.

In our chosen label range, we have good physical models.



Training Sample: Train(75%) + Test(25%)
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Input stellar labels



Using t-SNE: an unsupervised ML method
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t-SNE Input spectra

● Using t-SNE for outlier detection.

● Train-Test Homogeneity Check.

● To highlight the complex relation between spectra and the labels.



CNN: The Architecture
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The Neural Network learns a 
mapping function between the 
input spectra and the set of stellar 
labels.

Avoids difficult  task of feature 
engineering.

Training process optimizes the 
values of these parameters.

448,134 parameters



CNN: Training
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● 30 models trained.
● Training using CPU. (16-26 minutes)
● 80% selected based on best test loss.



CNN: Training
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CNN Results: Observed Sample
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CNN: Accuracy and Precision
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CNN: Bias and Sigma curves for accuracy and precision
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Gradients of the output labels with respect to input GIRAFFE pixels (wavelength)

Does the CNN learn from spectral features?
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Measuring A(Li) without the Li line?

Comparison of CNN Li abundances with GES-iDR6 Li abundance after training the 
CNN on GIRAFFE spectra, masking the 6707.8 Å line.
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ML algorithms  are  efficient  at  learning  astrophysical  correlations,  for  example inferring Oxygen abundances 
from spectra with no Oxygen feature (Ting & Weinberg 2021).



What about the Fast rotators?
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As the  projected  rotational  velocity  (VSini)  increases,  the  spectral  lines  get  wider  and  shallower and 
there is increased blending.



Science application of the CNN results
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Investigation of galactic chemical evolution using hot stars doesn’t show the usual steep rise. This finding could 
have implications on later contribution of Li by long lived sources.



Science application of the CNN results
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Discovery of 28 new Li-rich giants in the Gaia-ESO iDR6 observations!!



● Smoothly fit bias and sigma curves with high-order polynomial functions and then estimate the precision 

and accuracy on the labels determined, taking the training set as a reference.

● Explore Bayesian NNs and log likelihood loss functions can account for both uncertainties in input data as 

well as model uncertainties yielding well-defined estimates of uncertainties.

● For surveys using a training set based on standard spectroscopy, coupled  with  a  CNN  method,  the  CNN  

gradients  could  be  used  to  detect  sensitive  features unused by the standard pipeline.

● For the future use of CNN or in general machine-learning for stellar abundances measurements, one will 

have to develop an objective criterion to decide whether an abundance is a real detection or an upper limit.

Future Prospects: On CNN Method



Credit: Gaia/DPAC/ESA, 
Amina Helmi, Annu. Rev. (2020)

Thank you for participating!!


