
Fig. 1

1. Data Discovery in pyVO

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

• The VO Registry and RegTAP

• Motivating the change

• The new API

(cf. Fig. 1)

2. The VO Registry

A collection of highly structured metadata (Dublin Core plus service infos plus table infos) on
∼ 26′000 resources (≈ data collections) with ∼ 70′000 tables.

Publishers usually run OAI-PMH endpoints to let everyone harvest their metadata records.

STScI, ESAC, and GAVO do that in order to feed RegTAP services.

1



res schema

· ivoid
· schema description

res table

· table description
· table name
· table utype

table column

· name
· ucd
· unit
· column description
· utype

relationship

· relationship type
· related id

stc temporal

· time start
· time end

res role

· role name
· base role

alt identifier

· alt identifier

resource

· ivoid
· res type
· res title
· updated
· res description
· creator seq
· source value
· waveband

res subject

· ivoid
· res subject

res date

· date value
· date role

stc spatial

· coverage

capability

· standard id
· cap type

validation

· val level
· validated by

res detail

· detail xpath
· detail value

interface

· intf type
· access url

intf param

· name
· ucd
· unit
· param description
· utype

stc spectral

· spectral start
· spectral end

Fig. 2

3. RegTAP

RegTAP is 13 · · · 20 tables containing a relational mapping of the Registry contents queriable
with ADQL and TAP.

(cf. Fig. 2)

The tables are designed such that you can look for the metadata items you want to retrieve
and/or constrain and simply NATURAL JOIN the tables you need. For instance, to find the URLs
(retrievable from the interface table) for TAP services (constrainable in capability) having data
for M32 (constrainable in stc spatial) created by a Mr. Copernicus (constrainable in res role),
you would write something like
SELECT access_url

FROM

rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.spatial

NATURAL JOIN rr.res_role

WHERE

[details irrelavant]

Yes, this assumes people are writing ADQL. Perhaps surprisingly, in practice the data model is
a larger problem than the ADQL.

See also Demleitner, M., Harrison, P., Taylor, M., and Normand, J., 2015: Client interfaces to
the Virtual Observatory Registry, Astronomy and Computing, 11, pp. 91-101.

2



4. pyVO Registry Before

The legacy pyVO API to the registry has essentially been:
registry.search(keywords, servicetype)

-> service-descriptors

– when you wanted infrared spectra, you would look for, roughly, “SSAP services with infrared”.

That’s not good enough any more: Services and data collections are really not 1:1 any more
(extreme case: several 104 tables within the single TAPVizieR service).

Also, with libraries like pyVO you don’t care too much any more whether you get something
through TAP, SCS, or SIAP, as long as you get it.

5. pyVO Registry After

The idea is that you combine Constraints and get back registry records that you can ask about
how they can be queried.

Try it:
http://blog.g-vo.org/media/2022/data-discovery-demo.ipynb

6. Parting Words

The code discussed here will probably end up in pyVO release 1.4 (or so). I’d be great if you
could exercise it a bit before then.

https://blog.g-vo.org/towards-data-discovery-in-pyvo.html tells you how to do this without nuk-
ing you system’s pyVO.

. . .Thanks!

3


