

Sicherheitsanforderungen bei der Langzeitarchivierung medizinischer Forschungsdaten – auf Grid-Basis

Security-Workshop NGI-DE Jahrestreffen

19. Mai 2011, Garching

Fred Viezens

- Nachvollziehbarkeit/Provenienz des Workflows bzw. der Entstehung und Weiterverarbeitung von Forschungsdaten sicherstellen
- Intellektuelle Nachvollziehbarkeit durch sinnvolle Metadaten (hier nicht die technischen Metadaten, wie Datenformat, Dateierzeugungsdatum etc.) ermöglichen
- Einhalten von Datenschutzvorschriften auch im Hinblick auf bisher unbekannte Nutzungsmöglichkeiten von Daten
- Langfristigen Zugriff auf Forschungsdaten realisieren

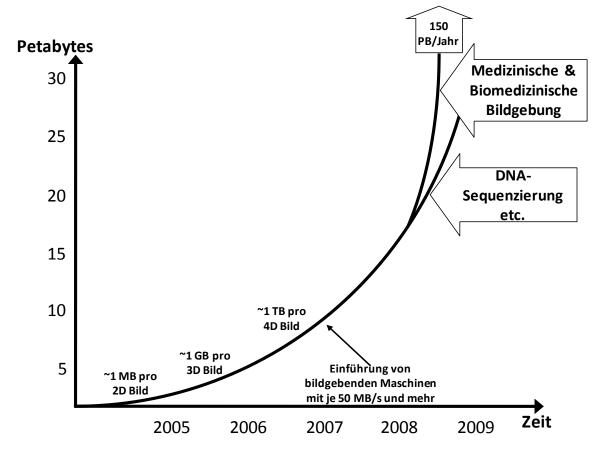
- Datenschutzanforderungen werden nicht geringer im Zeitablauf
 - Genomische Daten betreffen auch die Folgegenerationen
- Datenmengen spielen eine wichtige Rolle
 - Nicht alle Daten sind für die Forschung relevant
 - Datenschutz empfiehlt nur notwendige Daten zu speichern, daher Auswahl von Forschungsdaten in den Arbeitsprozessen realisieren (Tendenz: lieber alles sichern; dies kann auf Dauer nicht gehalten werden!)
- Einfacher Zugriff
 - Mediziner bevorzugen keine Kommandozeile, aber einfache Workflows

Gesetzliche Rahmenbedingungen

- Es existieren unterschiedliche Aufbewahrungsfristen:
 - Z.B. RöntgenVO von 10 Jahre bis zu 30 Jahre
 - FDA-Compliance 15 Jahre (Trial Master File bei Studien mit Ziel einer Zulassung der Therapie in den USA)
 - Beweiskräftigkeit bei klinischen Studien ist notwendig
 - Der Umgang mit Zeitstempeln bei Datenbanken ist z.B. noch nicht gelöst (Zertifikatskette, dynamisches Schreiben, etc.)

Forschungsdatenquellen (1)

- Die Menge medizinischer Daten wächst exponentiell
 - Dies ist eine direkte Folge der Weiterentwicklung von Möglichkeiten der Datenerhebung (z.B. Gen. Sequenzierung und MRT)
 - Dies gilt für Versorgung und Forschung, die in ihrer Ausrichtung aber klar abgegrenzt werden müssen
- Daten, die bislang erhoben worden sind, erhalten immer weitere Bedeutungen, z.B. aus Langzeitstudien und epidemiologische Erhebungen
 - Helmholtz-Kohorte, eine seit über 20 Jahren laufende Studie
 - Nachnutzung von in der Mayo-Clinic bis in die 1930-er
 Jahre zurückliegenden digitalisierten Patientendaten


Forschungsdatenquellen (2)

- Medizinische Daten aus der klinischen Versorgung
 - Sind immer mit Personenbezug verbunden
 - Werden zur rechtlichen Absicherung erhoben
 - Dienen als Grundlage für die Abrechnung medizinischer Leistungen
 - Haben nicht den gleichen Qualitätsfokus wie die Forschung
 - → Geplant ist der Secondary Use Case
- Forschungsdaten aus der präklinischen- bzw.
 Grundlagenforschung sowie aus Epidemiologie und Biostatistik haben i.d.R. keinen Personenbezug mehr

Datenaufkommen

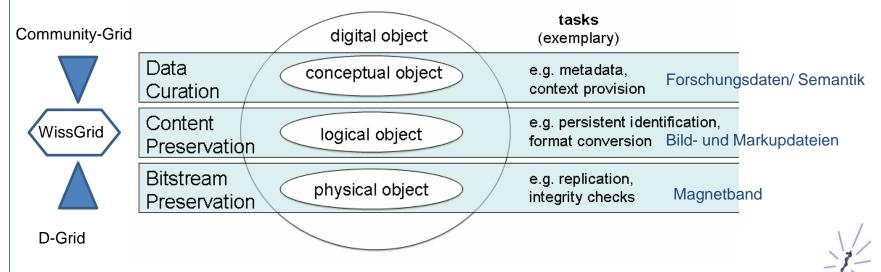
 weltweit geschätztes medizinische Datenaufkommen (medizinischen Bildgebung/ DNA-Sequenzierung und sonstige Daten)

Datenschutzmethoden in der Medizin (1)

- Die medizinische Forschung setzt verstärkt IT-Plattformen für Forschungsnetze / vernetzte Forschung ein
 - Identifizierende Daten (IDAT) dürfen nur dem untersuchenden Arzt zur Verfügung stehen
 - Medizinische Daten (MDAT) sind für die Forschung im Verbund relevant und sollen gemeinsam genutzt werden
 - Neue Erkenntnisse / Verfahren führen zu möglichen Re-Identifikationen aufgrund vorliegender Daten
 - k-Anonymität (1/k; k ist dabei die Anzahl an Individuen mit einem entsprechendem Identifikationsmerkmal)
 - Die Vertraulichkeit / ärztliche Schweigepflicht muss gewährleistet werden

Datenschutzmethoden in der Medizin (2)

Merkmal	Privatsphäre	Transparenz	Umkehrbar	Bemerkung
Methode				
Anonymisierung	+	_	Nein	IDAT werden
				entfernt
Verschlüsselung	+	_	Ja	Daten werden
				komplett
				verschlüsselt
Pseudo-	+	+	Unter	IDAT werden
nymisierung			definierten	durch
			Bedingungen	Pseudonym
				ersetzt



T. Neubauer et al. (2010): Pseudonymisierung für die datenschutzkonforme Speicherung medizinischer Daten. In: Elektrotechnik & Informationstechnik, 5. 2010 (127), S. 135-142.

Aktuelle Arbeiten (1)

- Lösungen auf Basis von Grid-Technologie sollen erarbeitet werden innerhalb von
 - WissGrid
 - entwickelt/ konzeptioniert generische Lösungen zur LZA, getrieben aus den Communities anhand von Checklisten (Blaupausen)

Aktuelle Arbeiten (2)

- LABIMI/F (DFG)
 - präzise Anforderungen an die Langzeitarchivierung biomedizinischer Forschungsdaten
 - Laborimplementierung einer Grid-basierten Lösung für zwei Use Case:
 - Bild- und
 - Genomdaten

Zusammenfassung

- Benutzbarkeit und Akzeptanz sicherstellen
 - Möglichst optimierte Eingabe/Ingest in dauerhafte
 Speicherlösungen
 - Einfachen Zugriff bei hohem Sicherheitsbedarf dauerhaft gewährleisten
- Fachlich relevante Forschungsdaten selektieren
 - Überblick bewahren
 - Wirtschaftlichkeit sicherstellen

Universitätsmedizin Göttingen

Medizinische Informatik

http://www.mi.med.uni-goettingen.de/

Fred Viezens

Computational Medicine und Grid-Computing Fred.viezens@med.uni-goettingen.de

Tel.: (0551) 39 - 13125